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1 Introduction

In this review I summarize and critique several attempts to prove the Generalized Second

Law (GSL). Here a “proof” means a detailed argument trying to establish the GSL for a

broad range of states in some particular regime. Thus I do not include results showing that

the second law holds in some particular state. Disregarding chronology, I have classified

the proofs based on the core concepts used.

Most of the proofs are unsound. Some have inconsistent or erroneous assumptions,

and others have hidden gaps in the reasoning. Nevertheless each of these proofs is valu-

able. Even an invalid proof can clarify the issues and choices that must be resolved in

order to fully understand the GSL. Faulty proofs might also be correctable through small

adjustments. It is better to view them as research programs than as mere fallacies.

1.1 What does the generalized second law say?

The Ordinary Second Law (OSL) states that the total thermodynamic entropy of the

universe is always nondecreasing with time. In a background-free theory such as General

Relativity (GR), a “time” is a complete spatial slice, and a “later time” is a complete slice

which is entirely in the future of the earlier time slice.

The GSL states that the “generalized entropy” of the universe is nondecreasing with

time. This generalized entropy is given by the expression

kA

4G~
+ Sout, (1.1)

where k is Boltzmann’s constant, c = 1 [1],1 and A is the sum of the area of all black hole

horizons in the universe, while Sout is the ordinary thermodynamic entropy of the system

outside of all event horizons. The first term is called the Bekenstein-Hawking entropy

(SBH). Since the horizon area and the outside entropy are time-dependent quantities, each

term is defined (like the ordinary entropy) using a complete spatial slice.

The above description is still very imprecise; there are several ways to interpret it. The

first step towards a proof must be to give a definition of the generalized entropy above.

1.1.1 Boltzmann or Gibbs?

Even in ordinary thermodynamics there are multiple ways to define the “entropy” [2].

The “Boltzmann entropy” requires a choice of coarse-grained observables capable of being

measured macroscopically. A “macrostate” is then a class of N pure states all having the

same values of all coarse-grained observables. Then each pure state in the class has entropy

given by S = k ln N . One then tries to prove the OSL by showing that typical states in

a macrostate are unlikely to evolve to another macrostate with much smaller N value,

but might evolve to a microstate with much larger N value. Since the ratios of N values

are typically huge in standard thermodynamic applications, the Boltzmann entropy of a

typically prepared low-entropy state nearly always increases in entropy over time, except

for small fluctuations. (However, if the state were truly typical the argument could be

1After section 1, I will normally use k = ~ = G = 1.
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reversed to show that the entropy also increases in the past direction. Thus a real proof

must also show that states which are atypical in the sense that they have low entropy

pasts are still sufficiently “typical” for purposes of future evolution.) For a fully quantum

mechanical discussion of the Boltzmann entropy see Wald [3].

Another choice is the “Gibbs entropy”, which assigns an entropy to mixed states. A

probability mixture over N states has entropy

S = k
∑

i

−pi ln pi. (1.2)

This definition does not yet require any notion of coarse-graining. It agrees with the

Boltzmann entropy in the case of a uniform mixture over all the pure states in a single

macrostate. The generalization to a quantum state with density matrix ρ is

S = −k tr(ρ ln ρ). (1.3)

This entropy is conserved under unitary time evolution. This means that the OSL is

trivially true for an ordinary closed quantum mechanical system, away from any black

holes. A real proof of the OSL using the Gibbs entropy must also explain why entropy

seems to increase.2

The Gibbs entropy does not fluctuate about its maximum value like the Boltzmann en-

tropy does. Hence the Gibbs definition is more convenient for proofs because it allows one to

state without reservation that the entropy of the state always increases with time. Presum-

ably this is why all proofs below except one use the Gibbs entropy. The exception is Fiola

et al. [4] (section 6), which combines the Gibbs and Boltzmann concepts (cf. section 6.2.3).

The choice between Gibbs and Boltzmann also has implications for the interpretation

of the area component of the generalized entropy. Consider a black hole in a mixed state

which has different possible values of the A, but has fixed Sout. Should one say that the

mixed state has an uncertain entropy? Or should one simply calculate the entropy using the

expectation value of the area? The former choice seems to be analogous to the Boltzmann

approach, since entropy values only to pure states, leading to statistical fluctuations in the

entropy even in equilibrium. The latter choice is more like the Gibbs approach since the

entropy is a function of a mixed state ρ. By taking the Gibbs approach to both terms in the

generalized entropy, one ends up with a simple trace formula for the generalized entropy:

S = k tr(ρ (A − ln ρ)) = k

( 〈A〉
4G~

− tr(ρ ln ρ)

)

. (1.4)

The use of the expectation value of the entropy in situations where there are fluctuations

in the area is further supported by arguments in ref. [5].

There are some respects in which proving the GSL is easier than proving the OSL.

For example, the black hole horizon favors one direction of time by definition, removing

2A Bayesian might propose that any observer who does not know the exact Hamiltonian of a system

should predict the future using a probability distribution over the possible unitary evolution rules. This

coarse-grained evolution rule will turn pure states into mixed states. But since every unitary evolution

rule preserves the maximum entropy state, a mixture of different unitary evolution rules also preserves the

maximum entropy state. Theorem 1 from section 4 then implies the OSL.

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
1

the problem of getting a time asymmetric result from time symmetric assumptions. And

unlike the ordinary entropy, the generalized entropy does not require an arbitrary method of

coarse graining to get an entropy increase, since the horizon determines what is observable

outside in an objective way [6]. Under this understanding, the generalized entropy at one

time does not depend on any details about the time slice except where the slice intersects

with black hole horizons.

1.1.2 The choice of horizon

The GSL seems to apply not only to black hole horizons, but also to de Sitter and Rindler

horizons. Arguably the only requirement is that the horizon be the boundary of the past

of some infinite worldline [7]. However, the GSL cannot apply to every null surface. For

example, consider a trapped spherically symmetric surface well inside the horizon of a

Schwarzschild black hole. Take the quantum field theory in curved spacetime limit: G → 0

while holding the black hole radius R constant. Since the area of such a trapped surface

decreases even classically, the total decrease in the entropy is of order G−1 due to the G

in the denominator in eq. (1.1). This decrease cannot be atoned for by an increase in the

Sout term, because this term is finite in the quantum field theory limit and thus has no

scale dependence on G.

Conventional wisdom suggests that the GSL should hold on the global event horizon,

i.e. the boundary of the past of I+. This is defined by a “teleological” boundary condition,

meaning that the location of the boundary at one time can depend on what will happen later

in time [8]. The event horizon is defined using the causal structure, a more primitive concept

than the metric, and therefore more likely to be meaningful in a full quantum gravity theory.

The event horizon is always a null surface, appropriate to the thermodynamic role it plays

as a concealer of information, while the apparent horizon may be spacelike or timelike

depending on the dynamics of the situation. Furthermore the location of the apparent

horizon, since it is local, is more sensitive to metric fluctuations, so the event horizon is

more likely to be well defined in full quantum gravity [5].

Nevertheless, analogues of the classical laws of black hole mechanics have been proposed

for the apparent horizon [9], and some suggest that the GSL should apply to the apparent

horizon, defined as a marginally trapped surface around the black hole [10]. Unlike the event

horizon, the apparent horizon is sometimes spacelike or timelike and thus it sometimes per-

mits information to escape. The only proof reviewed here which uses the apparent horizon

is that of Fiola et al. [4]. Their argument for the apparent horizon is discussed in section 6.3.

1.2 Types of regimes

The interpretation of the generalized entropy also depends on which regime a proof is set

in, i.e. what restrictions the proof needs to impose on the perturbations of the black hole.

The first question is how large and how rapidly changing these perturbations are

allowed to be (sections 1.2.1–1.2.2).

The second question is how many features of quantum mechanics are taken into ac-

count. The answer to this will determine whether the proof is set in the classical, hydrody-
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namic, semiclassical, or full quantum gravity regimes (sections 1.2.3–1.2.6). Each of these

four regimes involves a different interpretation of the exterior entropy term Sout.

1.2.1 The quasi-stationary and quasi-steady regimes

This section describes two distinct regimes. Confusingly, each has been called the “quasi-

stationary” regime by different authors. I will suggest that one regime should retain the

name, while for the other I propose the name “quasi-steady”.

For example, Sorkin uses the term “quasi-stationary” to mean that

[. . . ] we assume that the spacetime geometry can be well approximated at any stage

by a strictly stationary metric. [. . . ] Notice that the requirement of approximate

stationarity applies only to the metric; the matter fields (among which we may include

gravitons) can be doing anything they like. [I have used the ellipses here to disentangle

this definition from Sorkin’s commingled definition of “quasi-classical”.] ([11] p. 12)

Here the term “quasi-stationary” refers to any small, but otherwise arbitrary, perturbation

to a stationary background metric. This requires that the black hole radius satisfy R ≫ LP ,

or else the Hawking radiation coming from the black hole will itself be a large perturbation.

I will be using this definition of “quasi-stationary” in this review.

Frolov and Page appear to be using a different definition when they state that:

One would conjecture that the generalized second law applies also for rapid changes to

a black hole, but then SBH , one-quarter of the horizon area, would depend upon the

future evolution. One would presumably also need to include matter near the hole in

[Sout], but it is problematic how to do that in a precise way without getting divergences

from infinitely short wavelength modes if there is to be a sharp cutoff to exclude matter

inside the hole. In a quasistationary process, one can with negligible error allow enough

time for the modes to propagate far from the black hole, where the states ρ1 and ρ2

and their respective entropies can be evaluated unambiguously. ([12] p. 3903)

Here the same word is being used to mean that there are no rapid changes, so that one does

not need to know the future state of matter to calculate SBH . This means that the state the

matter fields are in is an approximately steady state with respect to the Killing field that

generates the horizon, over periods of time on the order of the black hole radius R. I will

refer to this as the “quasi-steady” regime, because it requires the system to be in an approx-

imately steady state. The quasi-steady regime implies the quasi-stationary regime, because

it makes no sense to talk about unchanging matter fields living on a changing metric. But

the converse does not follow, because it is possible for the power absorbed by a black hole

to be small in magnitude but still rapidly changing with time. As it happens though, all

proofs reviewed here either permit large fluctuations (i.e. are not quasi-stationary proofs)

or else require the fluctuations to be slow as well as small (i.e. are quasi-steady proofs).

Note that in the quasi-steady regime, large changes in SBH ∼ R2/L2
P are still permitted

if they are caused by a nearly constant influx of energy into the black hole; the requirement

that the perturbation to the metric be small only requires that

R
dSBH

dt
≪ SBH ∼ R2

L2
P

. (1.5)
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On the other hand, the second derivative of SBH is related to the change in the energy

falling into the black hole, and is therefore required to be much smaller:

R
d2SBH

dt2
≪ dSBH

dt
. (1.6)

The first law. The quasi-steady approximation is useful because it implies the First

Law [13, 14] of black hole mechanics, viewed as a relation which holds between arbitrary

slices of the black hole event horizon [7, 15]. The background spacetime (about which

these quasi-steady perturbations are made) is the Kerr-Newman electrovac solution to the

Einstein field equations.

One must be careful in defining the notion of “time translation” because it depends on

the choice of electromagnetic gauge. To describe events distant from the black hole, it is

most natural to use a gauge choice in which the connection Aa vanishes at spatial infinity.

Since the Kerr-Newman spacetime is asymptotically Minkowskian, one can then identify

the time-translation Killing vector ξt, rotational symmetry ξφ, and the electromagnetic

U(1) phase shift based on their action on the asymptotic region. These generate conserved

quantities: the Killing energy E, angular momentum J , and charge Q respectively. Using

the quasi-steady approximation, it now follows that between any two slices of the perturbed

black hole’s event horizon,

dE = T dSBH + Ω dJ + Φ dQ, (1.7)

where dE, dJ , and dQ are the fluxes of Killing energy, angular momentum, and charge

into the black hole between the two slices, T is the Hawking temperature, Ω is the angular

velocity and Φ is the electrostatic potential on the horizon. [14, 15]. (Since E, J , and Q

are conserved, the flux of these quantities into the black hole is equal to the change in the

mass, angular momentum, and charge of the black hole itself.)

On the other hand, to describe events near the black hole’s event horizon, it is more

natural to use a different notion of time translation coming from the horizon generating

Killing vector ξH = ξt + Ωξφ. It is also more natural to use a gauge choice in which the

potential vanishes on the horizon (i.e. Aaξ
a
H |horizon = 0), rather than at asymptotic infinity.

The flow of ξH is then a combination of asymptotic time-translation, rotation, and phase

shifting. The Killing ‘energy’ generated by ξH is

E′ = E − ΩJ − ΦQ, (1.8)

which is proportional to the energy defined relative to a “fiducial observer” who co-rotates

with the black hole near the horizon. This permits the expression of the First Law in a

more compact form:

dE′ = TdS, (1.9)

which is the form that will be used in several of the proofs below.

– 6 –
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In order to deduce eq. (1.7), the quasi-steady regime must require that the state be

slowly changing, not with respect to the ξt Killing flow, but with respect to the ξH [7]. Only

in the “quasi-static” case where the background metric is a non-rotating black hole, are

they the same. For example, a rapidly rotating black hole illuminated continuously by light

from the “fixed stars” is not quasi-steady, because the incoming starlight is stationary with

respect to the wrong Killing field. This restriction may seem pedantic, but it is necessary

to derive the First Law (1.7) as applied to arbitrary slices of the horizon. Since GSL as

I have defined it in section 1.1 also applies to arbitrary slices of the horizon, any proof of

the GSL which uses the First Law as a step implicitly assumes the quasi-steady regime.3

1.2.2 The adiabatic limit

I will use the term “adiabatic” to refer to a process which is described by the time evolution

of a first order deviation from the Hartle-Hawking equilibrium state ρHH .4 This limit is

arguably used by the proof in Wald [16] (section 2.2).

More precisely, given any state ρ, one can define a one-parameter family of states:

σ(ǫ) = (1 − ǫ)ρHH + ǫρ. (1.10)

This is a positive density matrix, at least for 0 ≤ ǫ ≤ 1. However, some quantities of

thermodynamic importance — such as the entropy — are undefined except for positive

states. For these quantities one should not expect expect a Taylor series in ǫ to converge

unless σ(ǫ) is also positive for small negative values of ǫ. Also, in a system with infinitely

many degrees of freedom, there may exist states ρ whose generalized entropy is infinitely

less than that of the Hartle-Hawking state. Assuming that ρ is selected to avoid these

pathologies, and that ǫ is a small parameter, the state σ is adiabatic.

Assuming that the GSL is true, in the adiabatic limit all processes are reversible (in the

sense that the generalized entropy is constant with time). This is because dS/dt, viewed

as a function of the state, takes its minimal value of zero in the Hartle-Hawking state, and

must therefore be constant to first order as one departs from the Hartle-Hawking state.

Some examples of this are given in ref. [17].

An adiabatic perturbation is even smaller than a quasi-stationary perturbation, be-

cause it is not only small in its gravitational effect on the background metric, but also

small in its effect on the thermal atmosphere of the black hole. Surprisingly, an adiabatic

perturbation need not necessarily be quasi-steady. If ρ is a rapidly changing state, then

σ is an adiabatic state which is still rapidly evolving with time. Thus the quasi-steady

adiabatic regime is more restrictive than either regime taken separately.

3If only the quasi-stationary approximation holds, the First Law still applies when comparing the black

hole before and after the perturbation is made. But then it cannot be used to rule out temporary decreases

of the entropy during the perturbative process, so one only gets a weaker form of the GSL.
4Jacobson and Parentani [7] use the term “adiabatic” to refer to what I am calling quasi-steady processes.

This is similar to the definition of “adiabatic” in mechanics, but I would like to reserve that term here for

the thermodynamic meaning, to describe a process which is always near thermal equilibrium.

– 7 –
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1.2.3 Classical black hole thermodynamics

The previous two sections allow one to classify proofs based on how large and rapidly chang-

ing the perturbations to the black hole are permitted to be. The next four sections offer a

different classification based on the features of quantum mechanics which are included.

Consider first the regime in which any change in Sout is much smaller than the changes

in SBH . This means that quantum effects such as Hawking radiation are unimportant,

leaving classical GR coupled to matter satisfying the null energy condition. In this case

the GSL reduces to the classical Second Law, which states that the area of the event horizon

is nondecreasing.

In what situations is this approximation justified? Suppose the black hole exchanges

a small amount of Killing energy with a system outside the black hole. The marginal

entropy gain or loss in the systems is proportional to their inverse temperature. So ∆Sout

is negligible compared to ∆S whenever the Killing temperature of the external system is

much larger than the temperature of the black hole.

In this regime, Hawking’s area increase theorem [18] states that the area of all black

hole event horizons increases with time. This theorem requires an assumption related to

cosmic censorship; the simplest assumption is that there are no singularities on the horizon.

Using this assumption I now give a rough sketch of the proof below:

Each horizon generator carries an infinitesimal amount of horizon area. The change in

this area over time is given by the Raychaudhuri equation:

− dθ

dλ
=

1

2
θ2 + σabσ

ab + 8πGTabk
akb, (1.11)

where θ = (1/A)(dA/dλ) is the expansion parameter, σ is the shear tensor, and ka is a null

vector on the horizon of unit affine length.5 Since the right hand side of this equation is

always positive by the null energy condition, a horizon generator with negative expansion

is “trapped” and must terminate in the future at a finite value of the affine parameter.

It cannot terminate on a singularity because by assumption there are no singularities on

the horizon. Nor can it leave the horizon because it is impossible for generators to leave

a future horizon. Consequently, since all horizon generators have nondecreasing area and

any new generators appearing on the horizon only add even more area, the area cannot

decrease. Consult ref. [19] for the full details of the area increase theorem.

This may be regarded as the first proof of the GSL, limited to the classical regime in

which Sout is negligible compared to SBH = A/4.

1.2.4 The hydrodynamic approximation

In quantum field theory (QFT) the entropy cannot be treated as a classical 4-vector,

because it is not fully localizable. Instead the entropy in quantum mechanics is subadditive,

i.e. the entropy of a whole system can be less than the sum of the entropy of its parts [20].

Additionally, the entropy in a region with sharp boundaries is dominated by the divergent

entanglement entropy of fields close to the boundary. Some renormalization scheme is

5i.e. λ;aka = 1 on the horizon generator.

– 8 –
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necessary to obtain a finite entropy. In section 5.1, I argue that this can sometimes lead

to superadditivity, in which the whole has more entropy than the parts.

However, in some situations the entropy is approximately localizable. In this hydro-

dynamic approximation, the entropy and energy are described by classical currents sa and

T ab. This is the setting for Wald [16] (section 2.2), and the proofs via Bousso’s covariant

entropy bound [21, 22] (section 5).

Unfortunately, I have not been able to find any regime in which this approximation is

justified except when classical black hole thermodynamics is also valid. This suggests that

proofs using the hydrodynamic approximation are redundant, because they never apply

except when classical black hole thermodynamics also applies.

To see the difficulty, consider blackbody radiation at local temperature T . Quanta can

only be considered well-localized at distance scales much larger than their average wave-

length, which is inversely proportional to the local temperature T . So a reasonable first

guess would be that the hydrodynamic approximation is justified when the local thermody-

namic potentials change significantly only over distance scales much larger than the inverse

temperature. But this condition does not seem to be satisfied by the thermal atmosphere

near an event horizon, because its local inverse temperature is proportional to the proper

distance from the horizon’s bifurcation surface. Since the thermal atmosphere cannot be ac-

curately described by the hydrodynamic regime, it would appear that in the hydrodynamic

regime can only apply to situations in which the thermal atmosphere can be neglected. The

only situation I know of like this is when the infalling matter has Killing temperature much

larger than the temperature of the black hole — but then classical black hole thermody-

namics also applies (cf. section 1.2.3), making the hydrodynamic regime redundant.

So further work should be done to explore when the hydrodynamic regime is really

justified, in order to see exactly what new information the hydrodynamic proofs add beyond

what was already given by the area increase theorem.

1.2.5 The semiclassical regime

Neither the classical nor hydrodynamic limits permit one to consider fully quantum me-

chanical states of matter using the techniques of QFT. This deficiency is remedied by the

semiclassical gravity approximation [23]. In this approximation the metric is treated as

classical but it is coupled self-consistently to the expectation value of the renormalized

stress-energy tensor via the semiclassical Einstein equation:

Gab = 8πG〈Tab〉. (1.12)

Thus one neglects the gravitational effect of fluctuations in the stress energy tensor. In the

Feynman picture, this involves ignoring diagrams with graviton loops even while taking

matter loops into account.

This approximation may be justified either in the large N limit or in the quasi-

stationary limit. In the large N limit, the contributions of each field to the expectation value

of the stress-energy contribute coherently, and is therefore of order N times the contribution

of a single field. On the other hand, the fluctuations of each field contribute incoherently

– 9 –
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and therefore are of order
√

N times the fluctuations due to a single field. So the matter

fields can be arranged to have a large effect on the metric even while their fluctuations are

negligible. This permits exploration of the semiclassical but not quasi-stationary regime.

A difficulty arises, however, due to radiative corrections. These can create higher-

derivative terms in the gravitational action, leading to pathological extra degrees of freedom

whose energy is unbounded below. If the perturbation due to gravity is small, these

extra degrees of freedom can be disposed of using perturbative constraints [24], but if the

perturbation is large this method does not work. Fortunately, there exist two-dimensional

gravitational models without this problem. This permitted Fiola et al. [4] to create a proof

of the GSL set in the non-quasi-stationary regime using the RST model (section 6).

The second situation in which the semiclassical approximation may be justified is in

the quasi-stationary regime, in which the effect of the matter fields is a small perturbation

to the metric. One begins by specifying a classical background manifold (possibly sourced

by some classical “background” stress-energy tensor) and then specifying a QFT state on

this background manifold. Because the perturbation to the metric is small in the quasi-

stationary approximation, it is permissible to calculate the properties of this QFT state

using the background metric instead of the perturbed metric. In the case of quantum fields

whose wavelength is of the order of a large black hole’s radius R ≫ lP , the stress energy

goes as 〈Tab〉 ∼ ~R−4, and the gravitational effects of the stress-energy on the metric are of

order ~G = l2P (the Planck length squared), which is small compared to R2. Gravitational

perturbations are thus negligible except when they affect the Bekenstein-Hawking term

SBH . Because SBH has an l2P in its denominator (eq. (1.1)), these O(l2P ) perturbations of

the geometry can produce an O(1) shift in the value of the generalized entropy.

One might worry that since the fluctuations in the stress-energy can be of the same

order as the expected stress-energy, it is incorrect to treat the spacetime geometry as

taking a definite value, invalidating eq. (1.12). However, this limitation is irrelevant for

semiclassical proofs of the GSL if, as suggested by ref. [5], SBH is taken as proportional to

the expectation value of the area (cf. section 1.1.1). Then all one needs is the expectation

value of the first order change in the geometry, allowing eq. (1.12) to be replaced with the

expectation value of the linearized Einstein equation:

〈G1
ab〉 = 8πG〈T 1

ab〉. (1.13)

This version of the semiclassical approximation still requires any fluctuations in the quan-

tum fields to be small enough to neglect nonlinearities in the Einstein equation, but it does

not require the fluctuations in the energy to be small compared to the average energy.

Since the gravitational field contains independent degrees of freedom, eq. (1.12) is

insufficient to completely determine the first order perturbation to the metric caused by

the first order component of the stress-energy tensor. In general this ambiguity must be

resolved by an appropriate choice of boundary conditions, but fortunately proofs of the

GSL may ignore this subtlety. Why? Because the only feature of the first order change in

the geometry which must be considered to calculate the generalized entropy is the area, and

the change in the area is given by the expansion parameter θ. Now θ can be calculated using
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the linearization of the Raychaudhuri equation (1.11) about the background spacetime:

− dθ0

dλ
= θ0θ1 + 2σ0

abσ
ab 1 + 8πGT 1

abk
akb. (1.14)

Imposing the event horizon final boundary condition θ|λ=∞ = 0, one can solve for θ1:

θ1(λ) = 8πG

∫ ∞

λ

dλ′ T 1
abk

akb + 2σ0
abσ

ab 1 exp

[

∫ λ′

λ

θ0dλ′′

]

, 6 (1.15)

Therefore θ1 is a function of the source T 1
ab alone iff the background shear tensor σ0

ab

vanishes.

In the quasi-stationary case, the background value of σ0
ab does vanish, as well as θ0

and T 0
abk

akb, and eq. (1.15) becomes:

θ(λ) = 8πG

∫ ∞

λ

Tabk
akbdλ′. (1.16)

This equation can be used to determine the change in ∆SBH from one time to another in

the quasi-stationary regime.7

The entanglement entropy divergence. Defining ∆Sout in the semiclassical regime

is harder, because the entanglement entropy of any region with a sharp boundary diverges

in QFT. So in order to define a finite Sout, one must somehow subtract off this infinite

entropy through a renormalization scheme. Wald’s proof in section 2.2, because it remains

in both the hydrodynamic and quasi-steady limits, can avoid this by only considering

local changes to the entropy of the black hole’s thermal atmosphere. But proofs in the

semiclassical regime must work harder: those by Zurek and Thorne [25] (section 2.1) and

Sorkin [11] (section 4.2) still require an explicit renormalization scheme. Proofs using an

S-matrix, such as Frolov and Page [12] (section 3) or Mukohyama [27], evade this issue

by only considering asymptotic quantum states. However, this strategy can only be used

to determine Sout and SBH at the beginning and end of a perturbing process, making it

unsuitable for proving the GSL for intermediate time periods except in the quasi-steady

approximation, which permits one to find the intermediate values of the entropy by using

a linear interpolation justified by eq. (1.6).

In order to analyze this divergence, it is necessary to impose some cutoff which regulates

the infinite entanglement entropy, e.g. the t’Hooft “brick wall” cutoff [28], in which the

horizon is replaced with a reflecting boundary a proper distance δ from the bifurcation

surface of a stationary black hole. In four dimensions, the divergent part of the entropy is

6The effect of quantized gravitational wave excitations would be described using a fractional order term

σab
1/2σab 1/2 in place of the 8πGTabk

akb term, both in this equation and below.
7As a bonus, if the GSL can be proven in the quasi-stationary case it can also be proven for small pertur-

bations of classical non-stationary black hole metrics. By Hawking’s area increase theorem (cf. section 1.2.3),

if on any horizon generator, at some time, σ0
ab or θ0 is nonzero, then θ0 is positive prior to that time. That

implies that the GSL is automatically true up until that time, because the zeroth order area increase times

l−2
P is of lower order in lP than any possible decrease in Sout due to the dynamics of the quantum fields.
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typically found to be something like:

Sdiv = kN
A

δ2
+ O(ln δ), (1.17)

where N is the number of particle species evident at the cutoff scale δ.8

In order to define the GSL semiclassically, there should be some physically well-

motivated renormalization procedure which makes changes in the generalized entropy finite.

This could be done by also making SBH diverge with the cutoff δ in an equal and opposite

way from Sout, so that their sum is finite in the limit that δ becomes small (though still

much larger than the Planck length, so as to remain in the semiclassical regime). This

dependence of SBH on δ is due to the renormalization of the gravitational coupling con-

stants [30]. The RG flow of G would absorb the divergences in the area term, while the

RG flow of higher-order curvature couplings would cancel out the subleading divergences.9

Physically speaking, the idea is that some or all of the entropy attributed to the SBH

term at long distance scales is actually revealed at short distance scales to be part of the

entanglement entropy Sout. It is thus natural that whatever is added to the latter term

must be removed from the former term in order to avoid double counting the entropy.

If this interpretation is correct, the flow in the coupling constants needed to make

the entanglement entropy finite should be the same as the ordinary RG flow needed to

cancel the divergences of Feynman graphs. Various one-loop calculations mostly support

this correspondence, with a few anomalies [33]. However, the cutoffs in ref. [33] rely on

a thermal exterior state on a stationary black hole in order to identify which state in the

regulated theory corresponds to the thermal Hartle-Hawking state. To apply these ideas

to a proof of the GSL, one would need to find a more general regulator.

1.2.6 Full quantum gravity

Clearly the best proof of the GSL would be one valid in full quantum gravity. Such a proof

should reveal whether black hole thermodynamics is a substantive constraint on theories

of quantum gravity or whether it is a generic feature of sufficiently “good” theories. The

other proofs would then be seen as special cases of this one.

However, no such proof can be made rigorous apart from a specific theory of quantum

gravity, or at least a set of axioms describing a class of theories. Since no fully satisfactory

background free theory of quantum gravity exists, such proofs are very speculative.10 In

fact only one has been attempted, that of Sorkin [35] (section 4.1).

Full quantum gravity must be able to describe Planck sized black holes, which have

no separation of scale between quantum and gravitational effects. Quantum fluctuations

8But see ref. [29] for a cutoff imposed in a freely falling frame which gives a different result.
9The modification of SBH induced by these terms may be calculated using the Noether charge

method [31]. Since the identical changes to SBH also appear in the First Law (1.7) [32], the basic structure

of the semiclassical proofs presented here should be unaffected by these extra terms.
10The proposed duality between string theory on Anti-deSitter and certain Conformal Field Theories [34]

does not define a fully background free bulk theory, since it is limited to states which are asymptotically

AdS. Nevertheless it certainly describes a broad class of states in which there are black holes, so a proof of

the GSL from the AdS/CFT duality would be highly significant. See below for a sketch of how one might

prove the GSL from this duality.
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being large, the formalism must be capable of dealing with rapidly changing black holes,

as well as quantum superpositions of any number of black holes — including none at all.

Even to formulate the meaning of the GSL in this context will be a great achievement.

If the full theory of quantum gravity cuts off the entanglement entropy at a particular

distance of order δ =
√

N in Planck units, then the entire entropy of the black hole

might be accounted for with the Sout term alone [30, 36]. This is the viewpoint taken by

Sorkin’s proof. A single term is more parsimonious than a strange sum of two very different

contributions. It also justifies the renormalization of SBH described in section 1.2.5, as the

reflection of an arbitrary cutoff-dependent division of a conceptually single quantity into

two component terms. But it is difficult to reconcile a finite cutoff with the property of

Lorentz symmetry [37], which is necessary for the GSL to hold (at least generically) [38].

It is believed by many researchers that the evolution and evaporation of a black hole

is somehow described by a unitary S-matrix when full quantum gravity is taken into ac-

count [39]. However, the loss of information in no way contradicts the laws of quantum

mechanics, since it quite possible to describe quantum mechanical systems that leak out in-

formation (the positive trace-preserving linear maps of section 4.1 give one possible way).

Every one of the proofs reviewed here permits information to be lost. The proposal of

unitary time evolution would imply that the semiclassical regime gives inaccurate results

in a regime in which it might be expected to be valid. It also appears to be radically

nonlocal unless its principles can also be also be extended to arbitrary Rindler horizons,

which cannot be locally distinguished from black hole horizons.11

Nevertheless, suppose one were to postulate unitary time evolution on slices which are

complete outside the event horizon (this “outside unitarity” assumption is stronger than

simply requiring the S-matrix to be unitary). Further assume that the entire generalized

entropy of the black hole really comes from the Sout term alone. Under these assumptions

the GSL could be proven in exact analogy to the OSL. Trivially, the fine-grained Gibbs

entropy neither goes up nor down under unitary evolution. However, to recover the entropy

increase found in the semiclassical limit one would then have to impose some additional

form of coarse graining, aside from the horizon (since under the unitary hypothesis the

horizon conceals no information). The challenge to those who believe in unitary outside

evolution is to define this coarse grained entropy, and to show that it reduces to the

generalized entropy in the semiclassical limit.

11A referee suggests an argument that this unitary hypothesis is also incompatible with the GSL. Suppose

a black hole of area A forms from the collapse of matter in a pure state, and Sout > −A/4, so that the

generalized entropy increases. Then if the black hole completely evaporates, the state must be pure by

virtue of the unitary S-matrix, and the generalized entropy becomes zero again.

One possible response is that the argument that the black hole entropy initially increases is based on

semiclassical principles, while the argument that the state is pure at the end is based on full quantum

gravity principles. If the semiclassical picture is obtained from the full theory by some sort of coarse-

graining procedure, then changing regimes in the middle of the argument may be invalid. One could make

an analogy to the ordinary thermodynamics of a box of gas which begins in a pure state at time t1. From

a coarse-grained perspective, the entropy in the box increases with time from t1 to t2, but from the fine-

grained perspective it remains pure even at a later time t3. This “decrease” of entropy from t2 to t3 is an

artifact of changing perspectives and should not be deemed a violation of the OSL.
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A similar kind of proof might be possible in the case of AdS/CFT. Even if the outside

unitarity assumed by the preceding paragraph is too strong to be true, the fact that the con-

formal field theory has unitary time evolution means that one might try to prove the GSL

in the bulk from the OSL on the boundary. Assuming that the duality is exact, one would

need to identify a coarse-grained entropy on the boundary theory and show that this coarse-

grained entropy both increases and is identical to the generalized entropy in the bulk theory.

1.3 Are the entropy bounds necessary for the GSL?

It is often asserted that the GSL limits the amount of entropy capable of being stored

in a region. The most important proposals for the purposes of this review are Bousso’s

covariant entropy bound [40] and the Bekenstein bound [41].

Bousso’s bound states: Suppose one takes any spatial 2-surface B with area A, and

shoots out from it a normal lightsurface L in any of the four possible directions. Then as

long as L is initially contracting everywhere, the entropy S passing through L is bounded by

S ≤ kA

4G~
. (1.18)

To support the Bousso bound, one might argue that if B is a cross-section of a black

hole event horizon, and L the horizon prior to B, a violation of the Bousso bound would

mean that more entropy would fall into the black hole than is accounted for by its current

entropy. Alternatively one might argue that if L completely encloses the past or future of

an ordinary region of spacetime, and yet more entropy is found inside than permitted by

the Bousso bound, adding more energy to the region would make it collapse into a black

hole of the same area and thus the GSL would be violated. However, neither of these

arguments is very convincing. Suppose that the Bousso bound is violated due to a large

number of particle species, or due to some hyper-entropic object carrying a large number

of degrees of freedom in a small space. Then these objects ought to feature prominently

in the black hole’s thermal atmosphere, leading to additional large contributions to Sout.

These contributions can salvage the GSL in such cases [43].

Similarly, the Bekenstein bound states [41] that in an isolated and weakly self-

gravitating region of characteristic length R and energy E, the entropy S satisfies

S ≤ 2πk

~
RE. (1.19)

(Bekenstein took the characteristic length R to be the widest dimension of the system,

but it has also been argued that the bound should refer to the thinest dimension [42].)

The Bekenstein bound’s motivation is similar to that of the Bousso bound, but instead

of collapsing the entire system into a black hole, one adds it to a preexisting black hole.

One possibility is that the system violating the bound is placed in a box and then slowly

lowered into the black hole. By means of the First Law (1.7), one then appears to obtain

a violation of the GSL [41] (cf. section 6.3 for a more detailed example of this argument).

However, Unruh and Wald [44] showed that the thermal atmosphere of a black hole acts

on the box with a buoyancy force. This prevents the box from being lowered closer to the

horizon than its “floating point” without expending work, and is sufficient to save the GSL

from being violated by the box.
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Alternatively the system may be released from far away and allowed to fall into the

black hole as in ref. [45], which derives eq. (1.19) though with a somewhat larger numerical

coefficient. However, like the argument above for the Bousso bound, this calculation does

not take into account the fact that if hyper-entropic objects exist, they will also be Hawking

radiated by the black hole, again plausibly saving the GSL [43].12

Note that Newton’s constant G is nowhere to be found in eq. (1.19). The bound is

motivated by gravitational physics and yet would constrain physics even in the QFT regime,

by ruling out more than an order unity (though large) number of particle species [48].

Bekenstein claims that his bound is saved even in the case of large number of species

because of the Casimir energy of the large number of particle species [49]. Responses to

this claim were given by Page [50], and Marolf and Roiban [51].

Despite the fact that the GSL does not imply either of the bounds, the converse

statement that the bounds imply the GSL appears to be close to true in certain limits.

The proofs of the GSL in section 5 begin by formulating ang proving a strengthened version

of the Bousso bound, which in turn implies the GSL in the hydrodynamic approximation.

Since the Bousso bound as presently formulated does not hold in every situation [52], these

proofs must work from more restrictive assumptions than those necessary for the GSL. In

one of these proofs, the assumption added is similar to the Bekenstein bound (section 5.1).

2 Proofs applying the OSL to the thermal atmosphere

2.1 Proof by analogy to an ordinary blackbody system

Zurek and Thorne (ZT) provided one of the first proofs of the GSL [25]. Though the

details are not as clear as in some later proofs, their argument was a major influence on

many of the later proofs. ZT begin by assuming that the entropy of a black hole is entirely

due to the entanglement entropy in the thermal atmosphere. This assumption is bolstered

by a quasi-steady calculation of the total number of ways to build up a black hole by

injecting quanta into the modes of the thermal atmosphere. The resulting entropy equals

the Bekenstein-Hawking entropy.

ZT proceed to write:

The above analysis provides, as a side product, a proof of the generalized second law

of thermodynamics — that in any process involving the interaction of a black hole

with the external universe, the sum of the black hole’s entropy and the universe’s

entropy cannot decrease. The proof: Since the hole’s atmosphere plays the role of a

thermal bath which exchanges particles with the universe, and since (when one used

energy at infinity ǫ and Hawking temperature TH instead of locally measured energy E

12Bekenstein’s rejoinder [46] that such hyper-entropic objects would take too long to form is unpersuasive

because the thermal atmosphere originates from extremely high frequency degrees of freedom in the local

vacuum state. According to the Unruh effect, such degrees of freedom are already in a perfect thermal

state in every QFT with local Lorentz symmetry [47], making their timescale of formation and dissolution

irrelevant. The objection can be sustained only if there is a breakdown of perfect Unruh thermality in

quantum gravity, but such an effect would probably doom the GSL regardless of whether the bounds are

satisfied. Also, none of the proofs in sections 2, 3, 4.1, 4.2, or 6 assume anything similar to either bound,

which suggests that neither bound is necessary for the GSL to hold.
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and temperature T) the change in the hole’s entropy is precisely that associated with

a standard thermal bath, the generalized second law is merely a special case of the

ordinary second law. ([25] p. 2174)

Thorne, Zurek, and Price (TZP) have a more developed version of this argument in a book

on the membrane paradigm [26]. This paradigm is an elaborate mathematical analogy

between a quasi-steady black hole and a viscous 2-dimensional fluid membrane located an

infinitesimal distance outside of the black hole horizon, and coupled to the fields outside the

membrane by various boundary conditions. So long as one only cares about what happens

outside of the black hole, the evolution of the exterior system coupled to the membrane is

equivalent to the coupling to the black hole interior. In this framework, TZP argue that:

From the discussion and equations in the last subsection it should be clear that when-

ever a slowly evaporating black hole interacts with the surrounding universe, its sta-

tistical properties [. . . ] are exactly like those of an elementary, nongravitating but

rotating thermal reservoir. Compare, e.g. the probability distributions for the number

of quanta in each mode of the field in the perfectly thermalized limit [. . . ] or the

expressions for the entropy changes resulting from interaction with the external uni-

verse. [. . . ] Since the standard derivations of the second law of thermodynamics are

perfectly valid for arbitrary systems interacting with such an elementary reservoir, it

is clear that they must be equally valid for arbitrary systems interacting with a slowly

evolving black hole. Thus the second law of thermodynamics is just a special case of the

standard second law of thermodynamics. In such a system the total entropy, including

that of matter and fields contained outside of the hole’s stretched horizons, can never

decrease [emphasis theirs]. ([26] p. 313)

This verbal argument does not specify what “standard derivation of the [ordinary] second

law” should be used as the basis for the proof. TZP thus need the reader to supply

some interpretation in order to turn the argument into a complete proof. My attempt at

interpretation now follows:

The entropy of the system is the sum of the elementary thermodynamic entropy of the

“elementary, nongravitating but rotating thermal reservoir” (i.e. the membrane), and the

system exterior to the membrane. One may write this as

∆S = ∆SBH + ∆Sout, (2.1)

where SBH represents the entropy of the membrane, and Sout represents the entropy outside

the membrane. Moving the membrane closer to the horizon ought to renormalize the black

hole entropy as described in section 1.2.5, by decreasing the value of SBH and increasing

the value of Sout to compensate (assuming for the moment that SBH and Sout are finite

and well defined).

In order to successfully correspond with the black hole system, one must also be able

to identify SBH with the entropy stored in the layers of thermal atmosphere between

the horizon and the membrane (call this the “deep atmosphere”), so that the generalized

entropy is the same in both systems — otherwise a proof that entropy increases for the

membrane system will not carry over to the analogous black hole system. When the mem-

brane is far from the horizon, this “deep atmosphere” is the whole atmosphere, and should

thus be equal to a quarter of the area of the horizon by virtue of the calculation in ZT [25].
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It can be calculated — at least for free fields and quasi-steady black holes — that

the membrane absorbs everything that falls on it and emits only exact thermal radiation.

From this it follows that anything that falls into the deep atmosphere can be treated as

though it were exactly thermalized.

Armed with the above results, the correspondence between the black hole system and

the membrane system can be shown. In the quasi-steady limit, both the membrane and the

deep atmosphere obey the Clausius relation (the former because of the First Law of black

hole thermodynamics, and the latter because anything that falls into the deep atmosphere

can be treated as if it thermalizes):

∆E = T∆S. (2.2)

Therefore, whenever matter falls into the deep atmosphere, one replaces the state of the

deep atmosphere with another in which the infalling energy is fully thermalized amongst

all the degrees of freedom in the deep atmosphere. This can only increase the entropy.

This thermalized deep atmosphere then behaves equivalently to the membrane system, for

which a second law holds. Since both of these processes increase the entropy, the GSL

always holds.

As far as I can tell, this argument is equivalent to the thin shell argument presented

by Wald [14, 53], with the “thin shell” being another name for the “elementary thermal

reservoir”.

Limitations. What can go wrong here? The most serious problem is the absence of a

regularization scheme needed to make SBH and Sout finite. Both the horizon and the mem-

brane are sharp boundaries, and are therefore each associated with infinite entanglement

entropy. The horizon entanglement makes SBH diverge, and the membrane entanglement

makes both SBH and Sout diverge. The entanglement across the membrane makes the total

entropy subadditive, thus invalidating the separation into two terms of eq. (2.1), since the

entropy cannot in fact be fully localized (cf. section 1.2.4). Therefore a justification of the

correspondence between the black hole and the membrane picture requires serious work

before it can be considered well-defined.

As an alternative interpretation of TZP’s argument, one might admit that the black

hole system stands in need of regularization, but suggest that the membrane paradigm

is itself the regularization scheme needed to render the black hole entropy finite. This

interpretation would view the correspondence between the black hole and the membrane

not as a mathematical identity between two distinct well-defined systems, but rather as a

formal identity between the unregulated and ill-defined entropy of the black hole system,

and a regulated well-defined membrane system. Replacing the deep atmosphere with the

membrane would itself be the way to regulate the generalized entropy.

The trouble with this interpretation is that it is not clear that the entropy and dynamics

of the membrane are really completely mathematically well-defined. Although the black

hole does seem to behave like a membrane for the purposes of the several calculations listed

by TZP above, in order to be completely well-defined semiclassically, one would have to be

able to fully specify the interactions between the membrane and the dynamics in all QFT
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states. The membrane satisfies an idealized blackbody condition: it absorbs everything that

impinges upon it while emitting exact thermal radiation. Unlike the usual (e.g. reflecting)

boundary conditions, this boundary condition permits the loss of information, meaning that

the fields coupled to the boundary condition do not evolve according to unitary dynamics

coming from a Hamiltonian. I do not know how one would quantize such a field theory,

nor am I aware of any work on this subject.

2.2 Proof by perturbing the thermal atmosphere

Rather than create an analogue membrane or shell system like the proofs in the previous

section, Wald [16] obtains his proof by describing changes in the thermal atmosphere In

order to sidestep the problems with entropy localization, he describes this atmosphere

using the hydrodynamic regime, in which the entropy outside of the black hole is can be

approximated by a classical current — i.e. it is fully localizable. Then he considers infalling

matter, which must be in the form of a small quasi-steady13 perturbation of this thermal

atmosphere to obtain the GSL. By bounding the amount by which this perturbation can

increase the atmosphere using the Clausius relation from ordinary thermodynamics, Wald

is able to limit the change in Sout based on the amount of energy flowing into the black

hole. The amount of energy flow also determines the change in SBH by means of the First

Law of black hole thermodynamics, resulting in a proof of the GSL.

In the Hartle-Hawking state, a stationary black hole is surrounded by a thermal atmo-

sphere. Locally this radiation looks just like blackbody radiation. Therefore fiducial ob-

servers co-rotating just outside the horizon will observe an energy density profile of the form

e = Tab ξaξb/ξ2, (2.3)

where ξ is the Killing field which generates the horizon, and Tab is the expected stress-energy

difference between the Hartle-Hawking state and the vacuum with respect to the Killing

flow (i.e the Boulware state). These fiducial observers should also see an entropy density

s = Sa ξa/ξ, (2.4)

where Sa is the entropy current associated with the thermal radiation observed by

fiduciary observers.

1In the Hartle-Hawking state, the outgoing Hawking radiation is exactly bal-

anced by incoming thermal radiation. Wald now modifies this incoming state by a

small perturbation.14

13In ref. [16], Wald considers arbitrary small quasi-stationary perturbations, but this is only enough to

get entropy increase over the course of the entire process (cf. section 1.2.1).
14This will result in a slightly different spacetime due to gravitational interactions. To compare the results

of the original and final spacetimes, Wald uses diffeomorphism symmetry to identify points in such a way

that the Killing field ξ of the unperturbed spacetime has the same norm at identified spacetime points.

However, because the gravitational effects are a small perturbation, it is acceptable to consider the entire

process as taking place on one background spacetime (cf. section 1.2.5). The only relevant gravitational

effect is the infinitesimal change in the horizon area.
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The perturbation in the energy density is

δe = δ[Tab ξaξb/ξ2] = (δTab)ξ
aξb/ξ2, (2.5)

and similarly the perturbation in the entropy is

δs = δ[Sa ξa/ξ] = (δSa)ξ
a/ξ. (2.6)

Any “small” perturbation to a thermal state satisfies the Clausius relation:

δs ≤ δsth = δe/T = 2πξδe/κ (2.7)

where sth is the entropy if the final state is still perfectly thermalized. Taking the limit as

the fiducial observers approach the horizon, and multiplying by ξ, Wald obtains

− (δSa)ξ
a|horizon ≤ 2π

κ
(δTab)ξ

aξb|horizon. (2.8)

Wald integrates both sides of this inequality over the horizon, including the null direction.

The left hand side becomes the total entropy falling through the surface as a result of the

perturbing process, while the right hand side becomes the change in A/4 given by the First

Law (1.9) for all quasi-steady physical processes.

But by the OSL, Sout cannot be reduced by more than the entropy flowing into the

black hole. It follows that

− ∆Sout ≤ ∆A/4, (2.9)

which is the GSL.

Limitations. How “small” does the perturbation of the black hole have to be for this

proof to apply? The bottleneck is in the use of the Clausius relation on line (2.7): only for

a first order increase in energy is it generally true that δsth = δe/T , since to second order

the temperature of the state changes. Consequently, the proof as it was written appears

to require the adiabatic regime, in which the atmosphere is only modified by a first order

perturbation. But for first order changes of the state, the Clausius relation δs = e/T is

actually an equality rather than an inequality, so that eq. (2.9) also becomes an equality:

− ∆Sout = ∆A/4.15 (2.10)

This would mean that the proof would have have a very limited range of applicability.

However, it is possible to free this proof from the assumption that the perturbation be

adiabatic. This assumption justifies the Clausius relation (2.7), which bounds the entropy

15By the argument in section 1.2.2, this result must hold for all adiabatic processes even if they are not

quasi-steady. This gives rise to an apparent violation of the GSL if one sends in an adiabatic pulse of energy

with no support prior to an advanced time t. Because of the teleological boundary condition, the horizon

grows in anticipation of the energy which is to come, so it seems that initially SBH increases while Sout re-

mains the same. But then by eq. (2.10), the generalized entropy remains the same at the beginning and end

of the process, which means that it must decrease at some later time to counterbalance its initial increase.

But that violates the GSL. Presumably the solution is that any quantum state has long distance entangle-

ments not taken into account in the hydrodynamic limit, which affect Sout even before the advanced time t.
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in the thermal atmosphere given a small change in its energy density. Assuming that

the energy density ∆e of the perturbation is large enough to meaningfully change the

local temperature, eq. (2.7) no longer applies. Let T (e) be the temperature of thermal

equilibrium at an energy density e; then the change in entropy is given by an integral:

∆s ≤
∫ e+∆e

e

de′

T (e′)
. (2.11)

Since the heat capacity of blackbody radiation is positive (at least for weak interactions),

adding a finite amount of energy density increases T in the denominator and thus makes

the constraint on ∆s even more stringent than that given in (2.7). On the other hand,

if energy is removed from the thermal atmosphere this decreases T in the denominator,

which because of the change in the sign of e, also leads to a more stringent constraint in

∆s. So as long as the thermal atmosphere has positive heat capacity, there is no need to

consider adiabatic perturbations; quasi-steady perturbations are small enough.16

Therefore, there is good reason to believe that Wald’s proof can be relieved of the

need to assume adiabaticity in most settings. But the proof still relies crucially on the

hydrodynamic assumption that entropy can be fully localized, which is not even fully true in

classical mechanics and which goes very wrong in QFT. The hydrodynamic approximation

is likely to be especially inaccurate when applied to the thermal atmosphere of a black hole

(cf. section 1.2.4). It is difficult to see how to modify the proof in a way that gets around

this assumption, given its heavy use of the concept of local thermal equilibrium.

16As an alternative to this argument, in the limit that the fiducial observers approach the horizon, the

change of temperature should become less and less important in all dimensions d > 2. Neglecting factors

of order unity, the heat capacity of blackbody radiation is

C = V T d−1, (2.12)

where V is the volume and T is the temperature defined with respect to the proper time of the local

fiducial observer. If the fiducial observer is at proper distance x from the bifurcation surface, it sees a

local temperature T = 1/x. When a pulse of energy falls into the black hole at a fixed retarded time, a

fiducial observer closer to the horizon will see this pulse in its own frame of reference as having energy

proportional to the scaling factor x−1, and volume proportional to x. This energy pulse is viewed by the

fiducial observer as raising the energy of a heat bath of equal volume whose total heat capacity C therefore

scales as x2−d. Multiplying both sides of eq. (2.11) by the volume, and expanding the result out as a power

series in the added energy ∆E, one obtains

∆S ≤
∆E

T0

−
(∆E)2

2CT 2
0

+ O(∆E3), (2.13)

where T0 is the temperature prior to the perturbation. The first nonlinear correction term now scales as xd−2

since T and ∆E scale together, leaving only the scaling of the heat capacity in the denominator. The higher

order terms will be even more suppressed. This shows that for d > 2, any dose of energy falling into the black

hole is “small” enough to render eq. (2.7) valid. In the case of interacting fields, there will be corrections to

eq. (2.12). However, the only property of eq. (2.12) needed is that the heat capacity of blackbody radiation

increases without limit as the temperature increases. It is difficult to imagine any sensible QFT with d > 2

violating this assumption, since this would require that the heat capacity in the interacting theory differ

from the heat capactity in the free theory by an arbitrarily large factor in the high energy limit.
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Figure 1. The Penrose diagram of an eternal black hole. The S-matrix is used to evolve the UP

and IN modes into the DOWN and OUT modes. In the case of the black hole which forms from

collapse, the white hole horizon is replaced by the collapsing star and the UP modes are populated

by the Hawking effect.

3 Proof using the S-matrix

Frolov and Page (FP) [12], inspired by the arguments of Zurek, Thorne, and Price [25, 26]

(section 2.1), provided a straightforward and explicit proof of the GSL for semiclassical,

quasi-steady black holes. In the quasi-steady limit, any processes taking place over a

finite period of Killing time may be described using a stationary black hole metric. These

interactions can be described by a unitary S-matrix relating the asymptotically past density

matrix ρpast to the asymptotically future ρfuture. The information in ρpast consists of the

infalling “IN” modes and the “UP” modes populated either by the white hole horizon

(in the eternal case), or by the Hawking effect (if the black hole formed from collapse).

Similarly, ρfuture specifies both the “DOWN” modes falling through the black hole horizon

and the “OUT” modes radiated to infinity (see figure 1). The advantage of the S-matrix

formulation is that it allows one to bystep the divergence of Sout at the horizon, by only

considering the entropy when it is infinitely distant from the black hole.17

So far everything is time reversal symmetric. To get the GSL, FP also need to assume

that: i) the UP state consists of radiation at the Hawking temperature, and ii) the UP

state is uncorrelated with the IN state.

In the eternal case these assumptions both hold if one begins with the Hartle-Hawking

state and arbitrarily adjusts the IN state without changing the UP state.

In the collapsing case the assumptions are reasonable in the semiclassical picture,

in which the UP mode thermal radiation can be traced back to Unruh radiation at the

formation of the event horizon. Since the black hole must eventually become quasi-steady

for this proof to hold, this radiation traces back to exponentially high frequencies and so

17Admittedly, the changes in the entropy and energy of the outside matter are still technically infinite,

since the S-matrix is only defined in the limit of infinite time, and the quasi-steady assumption approximates

the entropy and energy flux into the black hole as being constant with time. However, this divergence can

be removed by simply dividing all such quantities below by the total time elapsed.
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can be expected to be essentially in the vacuum state regardless of the matter state used

to form the black hole [12]. Therefore there is good reason to believe that the collapsing

case can be well approximated by uncorrelated UP and IN modes.

Since the S-matrix is unitary, FP now invoke the OSL to show that

SU + SI = Spast = Sfuture ≤ SD + SO, (3.1)

using the lack of correlation between UP and IN, and also the subadditivity of entropy for

DOWN and OUT.

FP now apply the First Law of black hole thermodynamics (1.9) to the temperature T

and energy E observed by a fiducial observer just outside and co-rotating with the horizon:

dSBH = T−1dE. (3.2)

In the semiclassical, quasi-steady approximation, the change in energy of the black hole is

equal to the expectation value 〈ED − EU 〉, while T remains constant, so that

∆SBH = T−1〈ED − EU 〉. (3.3)

Combining the change in the black hole entropy given by (3.3) with the change of

matter entropy given by (3.1), FP find that

∆S = ∆SBH + ∆Sout = T−1〈ED − EU 〉 + SO − SI (3.4)

≥ (SU − T−1〈EU 〉) − (SD − T−1〈ED〉). (3.5)

The quantity S − T−1〈E〉 is equal to minus the free energy divided by the temperature.

This quantity is maximized in a given system when it is at the thermal state of temperature

T, in which case its value is equal to ln Z, Z being the partition function. Thus, as long

as the partition functions are equal for the UP and DOWN systems, ∆S ≥ 0.

Why should these systems have the same partition function? FP suggest that this

follows from CPT symmetry. However, this argument is insufficient for the case of charged

black holes, because the UP modes of a positively charged hole would be related by CPT

to the DOWN modes of a negatively charged black hole. What is needed is a relation

between the UP and DOWN modes of the same black hole. This difficulty may be solved

by appealing to the property that the partition function is multiplicative for independent

subsystems, which implies that

ln ZU + ln ZI = ln Zpast = ln Zfuture = ln ZD + ln ZO, (3.6)

and thus to prove ZU = ZD it is sufficient to show that ZI = ZO. The latter may now be

directly established by CPT since the black hole’s charge should make no difference to the

dynamics of these asymptotically distant modes. However, perhaps it is better to avoid

any reference to time-reversal symmetry and simply note that the possibility of providing

unitary energy-conserving boundary conditions at spatial infinity relating the OUT and IN

modes requires that their partition functions match. Then the proof might be capable of

extension to exotic CPT-violating theories.18

18However, such theories must also violate Lorentz invariance [54], which seems in general to lead to a

failure of black hole thermodynamics due to UP modes no longer being thermal [38].
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Limitations. Mukohyama has claimed that FP’s proof applies only to the eternal black

hole case, and fails when extended to collapsing black holes [27]. His reasoning is that when

the black hole forms from collapse the information in the UP modes comes originally from

incoming matter prior to the formation of the event horizon. Therefore if the incoming

matter at earlier times is entangled with incoming matter at later times, the UP and IN

modes will be correlated. This situation violates assumptions i) and ii) above, which are

required for FP’s proof.

This criticism does not seem to be relevant to FP’s proof because it uses the quasi-

steady limit. Although the S-matrix is also defined using a very long time interval between

the initial and final states, the period of time over which the black hole grows from col-

lapsing matter must be far longer — or else FP could not have used the S-matrix elements

defined on a stationary background in their proof. In this limit all of the contaminated

UP modes have plenty of time to either fall into the black hole or escape to infinity, before

the beginning of the period analyzed by FP. The UP modes that become relevant to the

proof are in the extreme UV at the time of formation and are therefore unaffected by the

particular state of the infalling matter. Of course, any generalization to the collapsing case

that went beyond the quasi-steady limit would have to deal with the issue Mukohyama

raises, but on its own standards the proof applies equally to the eternal and collapsed

cases. (cf. section 4.3 for discussion of Mukohyama’s proposed extension [27] of FP’s proof

to the collapsing, but still quasi-steady case.)

A more serious limitation is that this proof cannot be applied to a black hole system

enclosed in a finite sized box. Such a box would reflect OUT modes into IN modes which

would generally lead to correlations between the UP and IN modes, violating assumption

ii). It would also make it impossible to regard IN as temporally prior to OUT, invalidating

the commutation relationships implicit in the S-matrix picture. For example, suppose a

particle carrying a qubit of information falls in from the boundary, scatters off the black

hole, bounces off the boundary and falls in a second time. Describing this situation with

the S-matrix above would lead to a duplication of quantum information, with the qubit

appearing twice in the IN state. In this context it is not natural to make a sharp division

between IN, OUT, UP, and DOWN states; it makes more sense to look at the state as being

defined on an achronal time slice and ask how it evolves to future slices. This approach is

used by the proofs in the next section.19

4 Proofs from a time independent state

This kind of proof, due to Sorkin, begins by defining a special mixed state corresponding

to the thermal state outside of the event horizon of the black hole. Astonishingly, one

can show that if this particular state evolves to itself, then there is a quantity which is

nondecreasing under time evolution for all states. If this nondecreasing quantity can be

equated with the generalized entropy, this results in a proof of the GSL.

19Note that these difficulties do not apply to the boundary at “infinity” used in the partition function

argument above, since in this case the box reflects radiation back on a timescale larger than the timescale

for which the quasi-stationary S-matrix is well-defined. Therefore it does not forbid the separation of UP

and IN modes over the period of time needed for the proof.
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Sorkin created two different proofs using this method: one applying to the full quantum

gravity regime [35], and the other to the semiclassical quasi-steady regime [11]. Unfortu-

nately, neither proof appears to be sound as it stands. The full quantum gravity proof has

inconsistent assumptions, while the semiclassical proof has an unwarranted step.

Mukohyama also has a semiclassical quasi-steady proof [27] combining this method

with the S-matrix approach of section 3. His proof and Sorkin’s semiclassical proof both

run into difficulty when applied to rotating black holes due to the absence of a well-defined

Hartle-Hawking state for Kerr black holes (cf. section 4.2).

4.1 Full quantum gravity version

The key feature of this proof [11] is the use of a remarkable theorem:

Theorem 1: Given a quantum system with a finite dimensional Hilbert space, and

a positive trace-preserving linear map on the space of density matrices, if the uniform

probability state evolves to itself, then any state always evolves to a state with greater or

equal entropy.

(I have stated Theorem 1 as it is proven by Sorkin himself in ref. [11]. However, it is

a special case of a much more general result concerning the nonincrease of the “relative

entropy” proven in ref. [55]. In its most general form this result can be applied to arbitrary

observable algebras.)

If one applies Theorem 1 to the system outside the horizon, a proof of the GSL requires

only a few more steps. First, one must argue that in the full quantum gravity regime, the

generalized entropy is really given by just the Sout term. This would be true if the entropy

associated with the area is entirely due to the entanglement entropy across the horizon. If

quantum gravity somehow cuts off the entanglement entropy at distances the order of the

Planck length, and the effective number of propagating fields is of order unity, one obtains

an entropy per area of the same order as the Bekenstein-Hawking entropy, lending credence

to the idea that it is simply a form of entanglement entropy [30, 36].

Second, one must show that the hypotheses of the theorem apply to the system out-

side the horizon, so that the outside entropy Sout cannot decrease. Sorkin needs additional

assumptions to prove this result. Before specifying a particular mathematically rigorous

theory of full quantum gravity, it is impossible to know for sure that any of these assump-

tions are sound. However, one may appeal to those features of QFT and GR which might

plausibly apply to quantum gravity. I have rephrased and reordered Sorkin’s assumptions

below, and also filled in some steps implicit in his argument:

1. It makes sense to talk about the region of spacetime R(t) containing everything which

is outside of the event horizon of a black hole at a given time t, and to assign this

region an algebra of observables A(t).

For example, in GR with Anti-deSitter boundary conditions, one may pick a time

coordinate T on the conformal boundary and then covariantly define the region as the

union of the future of the T = t locus on the boundary, with the region causally to the
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past of the boundary.20 In quantum gravity, there may be large quantum superpositions

of spacetime geometry, so this “region” might have very different geometries in different

branches of the superposition. Due to quantum fluctuations there might even be no black

hole or multiple black holes. Is it meaningful to assign a fixed algebra to such a wildly

varying region? The region in question is defined solely by its causal relationship to

the conformal boundary of spacetime. On the hypothesis that the causal structure of

spacetime is primitive as argued elsewhere by Sorkin [56], and thus well defined even at

the Planck scale, it seems reasonable to believe that a notion of region defined in terms of

its causal relationships is likely to still make sense.

2. All properties of A(t) are symmetric under time translation. Thus each algebra A(t)

is canonically isomorphic to the algebra at any one time, e.g. A(0).

Because time translation symmetry is used as an assumption, the proof applies only to a

1-parameter family of time slices on the horizon — a special case of the full GSL.

3. The algebras A(t) are all contained as subalgebras of one big algebra H, in such a way

that each algebra also contains as a proper subalgebra all of the algebras in its future.

H is the algebra of observables in the Heisenberg picture. Each region R(t) contains

the future regions, and therefore must contain all of the subregion’s observables as a

subalgebra. Sorkin assumes that some information falls across the horizon and is lost, so

that the algebras in R(t) do not include all observables from past times (cf. ‘Limitations’

below for the results of dropping this assumption)

The structure defined above gives rise to the Schrödinger time evolution, which is a

positive linear trace-preserving map acting on the density matrices ρ associated with A(0).

It is defined as follows: Although ρ is in the statespace dual to A(0), by restriction ρ may

also be viewed as a state dual to the algebra at a later time A(t), t > 0. One may then

apply a backwards time-translation symmetry to the algebra A(t) in order to translate it

into the algebra A(0), which transforms ρ into a new state ρ′. This evolution is autonomous

in the sense that it requires no information besides ρ to calculate ρ′.

4. There exists a conserved energy operator Ê in H which is defined by the value of the

fields at asymptotic infinity. Because Ê is defined at infinity, it is always measurable

outside the horizon and is therefore included in each algebra A(t).

It follows from this that the Schrödinger evolution also conserves energy.

5. The space of states dual to A(0) has a finite number of states below any given

energy Emax.

This assumption can only be true if the system has been placed in a box, e.g. AdS boundary

conditions. The restriction implies that every superselection sector of an algebra A(t) is

described by a hyperfinite type I algebra (i.e. it is isomorphic to the algebra of all operators

on some countable-dimension Hilbert space.)

20Sorkin’s language in ref. [35] associates the observables with a spacelike slice going from the boundary

of the spacetime to the horizon. On the assumption that the observables are causal this is equivalent to

the language I use here.
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Assumptions 1-5 plus the extra condition that there is only one superselection sector

are enough to prove the GSL. The microcanonical ensemble at any energy level E is given

by ρ = 1/N , where the natural number N is the degeneracy of that energy level. Sorkin

begins by proving that this microcanonical ensemble evolves to itself as follows: Consider

the projection operator P̂ = δ(Ê, E) in H which projects onto the energy value E. Since

energy is conserved, P̂ is also contained in A(t) for any value of t. The microcanonical

ensemble ρ is defined in terms of P̂ using the formula

〈a〉ρ = tr(aP̂ /N) (4.1)

for any operator a in A(t). Now a single factor21 of type I (or II) has a unique faithful

normal semifinite trace22 up to rescaling [57]. Since the trace is unique, it does not matter

whether eq. (4.1) is defined using the algebra at time t or the algebra at any previous

previous time t′ < t. As a result, the microcanonical ensemble is time-independent, i.e. it

evolves to itself under time evolution. Theorem 1 then shows that the outside entropy Sout

associated with any system of energy E is nondecreasing. Furthermore, by taking the sum

of the microcanonical ensembles at all energies up to some Emax, one may invoke Theorem

1 to show that the entropy is conserved for any state with bounded maximum energy. Since

every normalizable state can be arbitrarily well-approximated by a state with sufficiently

high maximum energy, continuity implies that all states exhibit entropy increase.

Limitations. Unfortunately, these five assumptions, all of which are taken from ref. [35],

are mutually inconsistent. For suppose that there were a set of algebras A(t) and H satis-

fying all of the above assumptions. Let Q̂ be the projection operator which projects onto

states with energy E > Emax. Restrict A(t) and H to the subalgebra of elements a satisfying

Q̂a = aQ̂ = 0, (4.2)

thereby obtaining the algebra of observables associated with the black hole system under

the assumption that the energy is less than Emax. These algebras AQ(t) and HQ are finite

dimensional by virtue of assumption 5, and satisfy assumptions 2 and 4 by construction.

They also satisfy by construction assumption 3 — except possibly for the criterion that

each algebra be a proper subalgebra of the future algebras, since it might be true that

states with energy less than Emax evolve by unitary evolution. However, since assumption

3 requires that information loss occur for the complete algebras A(t), and since every

normalizable state is arbitrarily close to one bounded by a sufficiently large energy bound,

as long as Emax is taken to be large enough the algebras AQ(t) also satisfy assumption 3.

21The requirement of a single superselection sector is a hidden assumption of the proof not clearly stated

in ref. [35]. If there are multiple superselection sectors, it is easy to construct examples in which the

maximum entropy state does not evolve to itself: e.g. three classical states A, B, and C where A and B

evolve to A while C evolves to itself under time evolution.
22Some definitions: The trace of an operator algebra is defined as a positive linear function of algebra

elements satisfying tr(AB) = tr(BA) for all elements A and B in the algebra. Semifinite means that every

projection operator with infinite trace is the sum of two nonzero projection operators one of which has

finite trace. Normal means that the trace of an infinite sum of positive elements is equal to the sum of their

traces. A faithful trace is one that assigns a nonzero value to every projection operator but zero.
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This implies that AQ(1) is a proper subalgebra of any algebra AQ(0). But every proper

subalgebra of a finite dimensional algebra has smaller dimension, so AQ(1) has smaller

dimension than AQ(0). This contradicts assumption 2 which states that the two algebras

are isomorphic and therefore have equal dimension.

One possible way to bypass the contradiction is to deny assumption 5 by allowing there

to be an infinite number of states below a given energy Emax. There is then no contradiction

since an infinite dimensional algebra can contain proper subalgebras isomorphic to itself.

To adapt Sorkin’s proof it would be necessary to use one of the generalizations of Theorem

1 to the infinite dimensional case, which are given in ref. [55]. One would need to show that

there exists an equilibrium state and that despite the infinite dimensionality of the algebra,

the nondecreasing quantity can still be reasonably identified with the finite Bekenstein-

Hawking entropy of the black hole.

Another choice would be to keep the algebras A(t) finite-dimensional below any energy,

but deny assumption 3 by permitting new degrees of freedom to be created near the black

hole horizon to compensate for those degrees of freedom lost by falling into the black hole.

If this is the case, then the Heisenberg algebra H becomes infinite dimensional even though

each algebra A(t) is finite dimensional. The above method for obtaining the Schrödinger

time evolution would fail because the algebras A(t) would no longer be subalgebras of one

another. The positive linear trace-preserving map specifying the dynamics would depend

on the details of how the new degrees of freedom entered the system. Hence it is no

longer possible to prove that the microcanonical ensemble evolves to itself, so additional

assumptions are still needed.

Alternatively, one might drop the demand of assumption 3 by hypothesizing that

the algebras A(t) are actually improper subalgebras of one another. The observables

outside the horizon would then evolve by a unitary evolution. This would resolve the

contradiction. Also, one could immediately conclude from unitarity alone that the

uniform probability state evolves to itself. Since unitary evolution is a special case of a

positive trace-preserving linear map the theorem would immediately show that Sout is

nondecreasing. On the other hand, the entropy would also be nonincreasing unless some

notion of coarse-graining were introduced. The proof of the GSL would then become

similar to proving the OSL (cf. section 1.2.6).

4.2 Semiclassical quasi-steady version

Sorkin has also proposed a similar proof applying in the semiclassical quasi-steady limit [11].

Rather than using the microcanonical ensemble, Sorkin now uses the “Hartle-Hawking

state”. When restricted to the region outside both the black and white horizons of an

eternal stationary black hole, this state is thermal with respect to the energy Eout measured

by a fiducial observer co-rotating just outside of the horizon. There should be a generalized

entropy associated with every spatial slice that terminates on the horizon. Consider a

family of such time slices Σ(t) corresponding to the t = const. slices of some coordinate t

in which the background metric is time independent. The state of this slice is then given

by a density matrix ρ. The generalized entropy is the sum of A/4 with Sout, the latter

term being given by some renormalized version of the formula −tr(ρ ln ρ). Now if t > 0, all
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the information contained in the slice Σ(t) is also contained in the slice Σ(0), which means

that ρ(0) is sufficient to determine ρ(t). The evolution of ρ from one time to another

is therefore given by a positive linear trace-preserving map. Actually, because the time

evolution results from unitary time evolution followed by restriction, the map satisfies a

stronger assumption known as complete positivity [55].23

In this setting the GSL states that the completely-positive time evolution map cannot

decrease the generalized entropy. Since the stationary state is a canonical ensemble, it does

not assign to all states equal probabilities. Sorkin uses a generalization of Theorem 1 to

cover this case (a proof can be found in ref. [55]).

Theorem 2: Consider a quantum system described by the algebra of bounded operators

on a countable-dimension Hilbert space (i.e. a type I hyperfinite von Neumann algebra), and

a completely-positive trace-preserving linear map on the space of density matrices. If the

state which is thermal at temperature T with respect to some “energy” operator Ê evolves

to itself, then the free energy 〈Ê〉−TS of any initial state whatsoever cannot increase under

this same evolution.

Sorkin chooses Ê to be the fiducial energy outside the black hole horizon. Applying

Theorem 2 to the exterior of the semiclassical black hole, the change in Sout over time is

restricted by an inequality:

∆(Sout − T−1〈Eout)〉 ≥ 0. (4.3)

The semiclassical approximation allows Sorkin to equate the change in the black hole

energy to the expectation value of the energy flowing into it. Furthermore, the quasi-

steady assumption that the flow of energy into the hole is uniform and slow permits one to

ignore the time-profile of the response of the black hole to perturbations, and assume that

the energy instantaneously increases the energy of the black hole, using the First Law of

black hole thermodynamics (1.9):

dSBH = T−1dEBH . (4.4)

Combining (4.3) with (4.4) gives

d(SBH + Sout) ≥ 0, (4.5)

which is the GSL.

Limitations. Sorkin’s approach seems to be very promising, but there are some gaps

that still need to be filled before it can be regarded as a complete proof.

One problem is that the Hartle-Hawking state is not well-defined for black holes with

superradiant modes. This includes rotating black holes except when they are placed in a

sufficiently small reflecting box [58]. The trouble is that there are field modes carrying a

negative amount of fiducial energy, which makes the thermal state unnormalizable. To get

around this problem, the proof might need to be reformulated in a way that depends only

on local events occurring near the horizon and not on global properties of the state.

23Complete positivity states that if the map acts on a system A which is entangled with another inde-

pendent system B, the resulting change in the combined system AB also has the positivity property, i.e.

positive states always evolve to other positive states.
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A second issue needing resolution is the nature of the renormalization scheme used to

define the entropy and energy. As Sorkin says:

It should be added that the matter entropy S(ρ̂) we have been working with is actually

infinite, due to the entanglement between values of the quantum fields just inside and

just outside the horizon [. . . ] Thus making our proof rigorous would require showing

that changes in [eq. 4.3] are nevertheless well-defined and conform to the temporal

monotonicity we derived for that quantity. This probably could be done by introducing

a high-frequency cutoff on the Hilbert space (using as high a frequency as needed in

any given situation) and showing that he evolution of ρ̂ remained unaffected because

the high-frequency modes remained unexcited. [From footnote (emphasis added):] In

order to make the proof rigorous, one would also have, for example, to specify an

observable algebra for the exterior fields and a representation of that algebra in which

the operators ρ̂ and Ê were well-defined (which in particular might raise the issue of

boundary conditions near the horizon) ([11], p. 16)

Thirdly, the above proof contains an unjustified assumption. It is true that if one

restricts the Hartle-Hawking state to a spatial slice Σ bounded by the bifurcation surface

one obtains a state thermal with respect to the Killing energy. But if the slice Σ passes

through any other place on the horizon besides the bifurcation surface, it is not so obvious

that the state is thermal. Indeed, since a thermal state is normally defined using a notion of

unitary time-translation symmetry, and since states on Σ have no automorphisms generated

by timelike Killing fields except when Σ passes through the bifurcation surface, it is unclear

what it would even mean to say that the state was thermal.

Since every faithful state is thermal with respect to some automorphism of the algebra

of observables [57], one might try to apply Theorem 2 to the free energy associated with

this special automorphism of the restricted Hartle-Hawking state (known as the “modular

flow”). Generically, the algebras of observables in bounded regions are expected to be type

III von Neumann algebras, meaning that they do not have a trace at all. This makes it

difficult to define the free energy using the formula 〈Ê〉−TS. But rather remarkably, there

exists a generalization of this concept of free energy to the context of an arbitrary von

Neumann algebera, known as the “relative entropy” S(ρ1|ρ2) between two states ρ1 and

ρ2. This relationship is an asymmetrical one: if ρ1 is regarded as a thermal state, S(ρ1|ρ2)

can be thought of as the free energy of ρ2 [59].24 Furthermore, Uhlmann [55] has proven

that the relative entropy is always nonincreasing when one restricts both ρ1 and ρ2 to a

subalgebra, a result which may help prove the GSL. However, the concept of the relative

entropy is not always identical to the free energy defined by using the stress-energy tensor.

So it is still necessary to justify the use of the First Law (4.4) when the energy used is the

modular flow. Perhaps this could be done by taking some sort of near-horizon limit.

If these problems can be addressed, this proof promises to be of greater applicability

than proofs using S-matrix techniques because the method allows one to discuss changes in

the entropy of the black hole over a finite period of time. This opens up the possibility that

by replacing eq. (4.4) with a more local formula like eq. (1.16) relating the stress-energy to

the growth in area of a rapidly changing black hole, the quasi-steady assumption may be

24In some conventions the roles of ρ1 and ρ2 are reversed.
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lifted. The framework of slices also has the advantage over the S-matrix proofs that it is

applicable to a black hole system contained in a reflecting box.

There are some more worrisome features, however, about attempting to extend this

proof beyond the semiclassical domain. The trouble is that the canonical ensemble is

unnormalizable when the entropy of the black hole is taken into account, because the

entropy increases faster than linearly with the energy. This means that the Hartle-Hawking

state is actually unstable. If the black hole happens to grow a little, its temperature

decreases and it continues to absorb more and more energy from its surroundings without

limit. If the black hole shrinks a little, its temperature increases and it evaporates more

and more. However, the timescale of the exponential growth is of order R3 in Planck units.

Also, if the black hole is in equilibrium with a spherical ball of thermal radiation with

radius greater than about R2, the ball of radiation is itself unstable under collapse to a

black hole over timescales of order R2. But since the semiclassical limit requires R ≫ 1,

neither of these instabilities can invalidate Sorkin’s proof as applied to timescales of order

R, the light-crossing distance.

4.3 Combined with the S-matrix approach

Mukohyama [27] has proven the GSL in a way that combines Sorkin’s method using a time

independent state with the S-matrix approach of Frolov & Page (section 3). This proof is

a mathematically detailed form of Sorkin’s argument applicable to any finite excitations of

a free, real, massless scalar field on a quasi-steady collapsing black hole background.

The S-matrix for the scalar field on a stationary black hole background is a positive

trace-preserving linear map going from the space of IN states to the space of OUT states.

Mukohyama begins by proving that if the IN state is in the canonical ensemble at the black

hole temperature T and angular velocity Ω (the Hartle-Hawking state), then the OUT state

is also thermal at temperature T . This implies that the free energy is nonincreasing when

the same trace-preserving linear map is applied to any finitely excited IN state falling into

the black hole (proven in Theorem 7 of ref. [27]). The theorem only applies when the IN

modes have a finite number of excitations above vacuum, despite the fact that the thermal

state used to prove the theorem has infinitely many excitations. Finally the First Law 1.9

is used, as in section 3, to show the GSL.

Limitations. The Hartle-Hawking state is ill-defined for superradiant black hole, yet it

is used in an essential way in the framework of the proof. As far as I can see, Mukohyama

does not address this difficulty.

It would be nice if the proof could be generalized to more interesting forms of matter

besides free massless scalar fields. It would also be helpful to remove the requirement that

the fields be finitely excited, because then the proof might be directly applicable to the

thermal atmosphere of the black hole, which has infinitely many excitations (semiclassi-

cally) located closer and closer to the horizon. In its current form the proof avoids directly

analyzing the thermal atmosphere by using the S-matrix technique.

Because Mukohyama’s proof uses an S-matrix, it only applies to asymptotic states, so

the GSL can only be proven over finite time intervals by assuming that the matter falling
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into the black hole is also quasi-steady.25 This limit is in tension with the requirement that

the infalling matter be a finite excitation of the vacuum, but presumably this apparent

contradiction can be reconciled by taking the quasi-steady limit of the infalling matter

after invoking Mukohyama’s Theorem 7.

5 Proofs via the generalized covariant entropy bound

Now I will present a very different family of proofs, which explore the relationship

between the Bousso bound and the GSL in the hydrodynamic regime, outside of the

quasi-stationary limit.

Suppose one has a spacelike 2-surface B from which a lightsurface L emanates in one

of the four possible lightlike and orthogonal directions. Let the null rays on the lightsurface

L continue until terminating either on a cusp, a singularity, or a second spacelike boundary

B′. If the null surface L is initially nonexpanding at the surface B, and if the null energy

condition holds on the horizon, then the area increase theorem shows that the A′, the area

of B′, is always less than or equal to the area A of B. In this situation Flanagan, Marolf, and

Wald (FMW) proposed a generalization of Bousso’s covariant entropy bound (GCEB). The

GCEB states that the total entropy S crossing the lightsurface L is limited by the relation

S ≤ A − A′

4
. (5.1)

This bound — together with the null energy condition — immediately implies the GSL.

Simply take B to be a slice of the horizon at one time, and B′ to be a slice at an earlier

time. (Since the light rays in L are going backwards in time from B, the condition that

the light rays are nonexpanding corresponds to the fact that the black hole’s area is

increasing with time). So if one can prove equation (5.1) one also has a proof of the GSL.

The following two proofs do just this.26

In QFT entropy is not fully localizable, so the interpretation of S in equation (5.1)

is tricky. The proofs below sidestep this nonlocality by explicitly using the hydrodynamic

approximation, thus assuming that the entropy falling across L is given by the integral of

a fully localizable entropy current vector (cf. section 1.2.4).

5.1 An assumption inspired by the Bekenstein bound

The first proof of the GCEB was given by Flanagan, Marolf and Wald (FMW) [21]. FMW

assume that associated with every lightsurface L there is an entropy current sa (thus sa

might depend on the choice of L as well as the spacetime coordinates).

FMW need to assume the following bound on sa in order to prove the GSL: Consider

a generator of L, whose affine parameter is λ at B and whose tangent vector is defined

as ka = (d/dλ)a. This generator will either have infinite affine parameter length or else

terminate at a finite affine parameter λ′ when it hits the surface B′, another generator in

L, or perhaps a spacetime boundary such as a singularity. If the generator goes on forever

25In this respect Mukohyama’s proof is the same situation as every other quasi-steady proof reviewed

here. cf. section 1.2.5).
26An additional argument for the Bousso bound not reviewed here is found in ref. [60].
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and is initially nonexpanding, then the null energy condition implies that Tabk
akb = 0

along that generator, since any positive energy added to the right side of the Raychaudhuri

equation (1.11) would cause the generator to be trapped making it terminate at a finite

value of the affine parameter. In this case FMW assume that the entropy flux across the

generator also vanishes. If on the other hand the generator terminates, FMW restrict the

entropy current sa
L flowing across the causal surface L to satisfy

|sa
Lka| ≤ π(λ′ − λ)Tabk

akb. (5.2)

According to FMW, “the inequality [(5.2)] is a direct analogue of the original Bekenstein

bound [(1.19)], with |sa
Lka| playing the role of S, Tabk

akb playing the role of E, and [λ′−λ]

playing the role of R” ([21] p. 4). There are however a few differences between FMW’s

version and the original Bekenstein bound (1.19). In the original bound, E refers to the

time component of the total energy-momentum vector, and R refers to an (orthogonal)

spatial distance. But FMW’s bound relates the null energy to a null “distance” (this is

invariant because both sides of eq. (5.2) transform the same way under a rescaling of

the affine parameter). More importantly, FMW’s bound relates the local entropy density

to the energy density instead of merely restricting the total amounts of both quantities.

This makes FMW’s bound significantly more powerful than the original Bekenstein bound.

Furthermore, if theFMW bound is integrated in flat spacetime to relate the total null

energy E with the total entropy S, the numerical coefficient π is a factor of two smaller

than the coefficient 2π in the original Bekenstein bound (1.19). This also makes FMW’s

bound stronger than Bekenstein’s bound.

I will now sketch FMW’s proof. In order to prove the GCEB (5.1), it is sufficient to

show that it applies to each individual generator separately. This can be shown trivially

for generators of infinite affine length from FMW’s assumption above that no entropy falls

across infinite generators. In the case of finite generators, the GCEB states that

I ≡
∫ 1

0

dλ sA(λ) ≤ 1

4
[1 −A(1)], (5.3)

where s = −sak
a and the area-scaling factor is

A(λ) = exp

[
∫ λ

0

dλ′ θ(λ′)

]

. (5.4)

Here FMW have used our freedom to rescale the affine parameter to make the integral go

from 0 to 1 (if the affine parameter goes to infinity, then no entropy can cross it and the

GCEB is automatically satisfied there). The Raychaudhuri equation applied to the null

generator says that

− dθ

dλ
=

1

2
θ2 + σabσ

ab + 8πTabk
akb, (5.5)

where σab is the shear tensor and the twist term is not included because null surfaces

orthogonal to any boundary B have vanishing twist. FMW now define G(λ) =
√
A, and

obtain from Eq’s (5.4) and (5.5) that

8πTabk
akb ≤ −2

G′′

G
. (5.6)
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Invoking the Bekenstein-like bound (5.2), they obtain that

|s| ≤ (1 − λ)πTabk
akb. (5.7)

Substituting eq. (5.7) into eq. (5.3) gives

I ≤
∫ 1

0

dλ (1 − λ)πTabk
akbG2. (5.8)

Eq. (5.6) can be used to re-express the integral as

I ≤ −
∫ 1

0

dλ (1 − λ)G′′G/4. (5.9)

Since 0 ≤ G(λ) ≤ 1 by the null energy condition, FMW drop it from the integrand and

integrate the rest by parts:

I ≤ [G(0) − G(1) + G′(0)]/4. (5.10)

Since G(0) = 1 by definition, G(1) =
√

A(1) ≥ A, and G′(0) ≤ 0 by the null energy

condition, it follows that

I ≤ [1 −A(1)]/4, (5.11)

which is the infinitesimal form of the Bousso bound as given in eq. (5.3) From this the

GCEB and the GSL follow.

Limitations. FMW’s proof is valid outside the quasi-stationary limit, but they pay a

price for it. Not only must they assume the hydrodynamic approximation, the null en-

ergy condition, and few enough species for their Bekenstein-like bound to hold, but there

are additional difficulties arising due to the difficulty of satisfying FMW’s Bekenstein-like

assumption (5.2) over very short distances.

One must be careful in applying the Bekenstein Bound (1.19) in the hydrodynamic

approximation, because the bound is always violated by any nonzero entropy current

in sufficiently small regions. Both the entropy and the energy scale as the volume for

constant density, causing the right side of (1.19) to vanish faster than the left side. This

violation is an artifact of going beyond the validity of the hydrodynamic regime, since at

sufficiently small distance scales the entropy is not as localizable as a classical current (cf.

section 1.2.4). Even quantum mechanics by itself is not sufficient to resolve this paradox,

since in QM the entropy of independent subsystems is subadditive, which only makes the

conflict with (1.19) in small regions worse.27

27I believe that a proper understanding of the Bekenstein bound and entropy localization requires QFT

considerations. Because the entanglement entropy of field excitations makes the entropy diverge in any

region with sharply defined boundaries, it is necessary to renormalize by somehow subtracting off the infinite

entanglement entropy contribution from the vacuum to obtain a finite value for the entropy. But since the

entanglement entropy term being subtracted is itself subadditive, the resulting renormalized entropy can

be superadditive whenever the entanglement entropy in the reference state used for subtraction exceeds

the entanglement of the state being considered. Consequently, it is possible to have the amount of entropy

stored in a system be greater than the sum of the entropy of the parts. This might permit something like

a renormalized-Bekenstein bound to hold at all distance scales.
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Because the Bekenstein bound does not play well with the hydrodynamic regime, a

fixed entropy current will always lead to violations of eq. (5.2) when one tries to apply

the hydrodynamic limit outside of its scope. For example, eq. (5.2) will not apply to a

spherically symmetric star collapsing into a black hole, if one takes B to be a slice of the

horizon very close to its moment of formation, since whatever the finite ratio is between the

entropy and energy at the center of the star when the horizon forms, λ′−λ can be taken to

be small enough to violate eq. (5.2), despite the fact that the Bousso bound is just fine there.

This is whyFMW’s proof permits the entropy current to depend on the choice of L

as well as on the spacetime point — otherwise there are no nontrivial spacetimes in which

eq. (5.2) is satisfied everywhere. This is justified byFMW on the grounds that “the entropy

flux, |sa
Lka|, depends upon L in the sense (described above) that modes that only partially

pass through L prior to [λ′] do not contribute to the entropy flux” ([21] p. 4). However,

permitting the entropy current to depend arbitrarily on L is somewhat ad hoc. It would be

more elegant if the entropy currents associated with different choices of L could be derived

from a single common description of the matter flowing through the spacetime.

An alternative way to justify the entropy current’s dependence on L is given in ref. [22].

Violations of eq. (5.2) take place at small distance scales in which the hydrodynamic ap-

proximation is invalid. So one may arbitrarily reconfigure the entropy current as long as the

averages of the entropy current remain approximately constant at distance scales in which

the hydrodynamic regime should be valid, in order to avoid violating 5.2 for a particular

choice of L. After all, the entropy current at distances smaller than the hydrodynamic

regime is nonphysical anyway, so why not adjust its value to be most convenient?

5.2 An entropy gradient assumption

FMW also gave another proof of the (non-generalized) Bousso bound from different as-

sumptions: namely a bound on the density and gradient of the entropy current, viewed

as a vector on the spacetime independent of the choice of L. This second proof does not

yield the GSL because it only proves the ordinary Bousso bound. In order to show that

this set of assumptions could not lead to a proof of the GCEB, Guedens constructed an

explicit counterexample to the generalized Bousso bound given any fixed nonzero entropy

current on spacetime [61]. In this example the GCEB (5.1) can be violated if B is taken to

be a 2-surface whose expansion parameter vanishes and B′ is sufficiently close to B. This

violation occurs because the change in area is a quadratic function of the affine parameter

interval ∆λ, while the flux of entropy is a linear function of ∆λ. That means that the ini-

tial area change is not enough to satisfy eq. (5.1) unless the entropy flux vanishes initially.

Consequently no proof of the GCEB is possible for all possible causal surfaces and fixed sa.

Because of the counterexample, Bousso, Flanagan, and Marolf (BFM) [22] have

constructed a modified proof which only tries to prove the Bousso bound for those causal

surfaces which have no entropy falling across them initially. As a bonus, this permits

them to weaken the assumptions of ref. [22]: they only need to restrict the gradient of the

entropy, not the density. Also, the numerical coefficient of the entropy gradient restriction

is improved.
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BFM assume the existence of an entropy current sa
L satisfying the following bound:

|s′| ≤ 2πTabk
akb, (5.12)

where s′ = −kakb∇asb and ka is the null vector generating the causal surface. Note that

eq. (5.12) implies the null energy condition. BFM also assume the isolation condition:

s|B = 0. (5.13)

They now attempt to prove that

∫ 1

0

dλ sA(λ) ≤ 1

4
[1 −A(1)], (5.14)

which is the the GCEB as applied to an individual generator as given by eq. (5.3). BFM

obtain eq. (5.6) again:

8πTabk
akb ≤ −2

G′′

G
, (5.15)

using the same argument given above. From the gradient assumption (5.12),

s′(λ) ≤ −G′′(λ)

2G(λ)
. (5.16)

Using the isolation assumption, BFM integrate the above assumption over λ in order to

bound the entropy density:

s(λ) ≤ −
∫ λ

0

dλ̄
G′′(λ̄)

2G(λ̄)
. (5.17)

Integrate this by parts:

s(λ) ≤ 1

2

[

G′(0)

G(0)
− G′(λ)

G(λ)
−

∫ λ

0

dλ̄
G′(λ̄)2

G(λ̄)2

]

. (5.18)

The first term is nonpositive when the causal surface is initially nonexpanding, and the

third term is explicitly nonpositive. Consequently these terms can be removed from the

inequality:

s(λ) ≤ − G′(λ)

2G(λ)
. (5.19)

BFM insert this inequality into the left-hand side of eq. (5.14) and use A = G2:

∫ 1

0

dλ sA(λ) ≤ −1

2

∫ 1

0

dλG(λ)G′(λ) =
1

4
[G(0)2 − G(1)2]. (5.20)

Since G(0) = 1 and G(1)2 = A, BFM obtain eq. (5.14), proving the GCEB.
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Limitations. BFM make two different suggestions regarding how to interpret the isola-

tion condition (5.13) [22]. One possible interpretation is that the condition restricts which

lightsheets L the proof is applicable to. But then one would not be able to prove that

generalized entropy increases from a time slice Σ to a later time slice Σ′, except when no

entropy is falling into the horizon at time Σ′. Under that interpretation the GSL would

not always follow from this proof.

Another suggestion is that rather than being a restriction on which causal surface

may be considered, one should change the entropy current depending on the lightsheet L.

This would be similar to BFM’s interpretation of the entropy bound described in the last

paragraph of section 5.1. One simply adjusts slightly the position of the entropy over small

distance scales outside the validity of the hydrodynamic regime, to automatically satisfy

the isolation condition. This pushes all of the meaningful physical content into the gradient

assumption (5.12) and the null energy condition, making it possible to prove the GSL for

a much wider class of black hole horizon.

Why is there so much ambiguity in the interpretation of these proofs? The hydrody-

namic regime is at fault. The trouble is the entropy current contains too much unphysical

information even in those situations where a hydrodynamic approximation is appropriate.

Fixing this might require going beyond the hydrodynamic limit, or perhaps more carefully

describing how to get a hydrodynamic entropy current from an actual state of matter.

5.3 Weakening the assumptions

The assumptions (5.2) and (5.12) can be weakened in two ways without compromising the

ability to prove the GSL. First of all one may replace Tabk
akb with Tab + σabσ

ab/8π in the

assumption and still use it to prove the GCEB, because the shear term is also present in

the Raychaudhuri equation (5.5) alongside the stress-energy term. This additional term

can thus be consistently interpreted as an (L dependent) gravitational energy term which

is added to the matter energy. FMW consider adding in this extra term, saying “we can

then interpret sa
L as being the combined matter and gravitational entropy flux, rather

than just the matter entropy flux” ([21] footnote p. 4). Since entropy stored in matter

and entropy stored in gravitational radiation can be interconverted by means of ordinary

thermal processes occurring away from any black holes, it seems inevitable that the outside

entropy term used when defining the GSL must include gravitational entropy. So the best

version of this proof probably includes the shear term.

Secondly, the absolute value signs in assumptions (5.2) or (5.12) are also unnecessary

for proving the GSL. Thus one may replace them with the assertion that each generator of

L with finite affine length satisfies either

s ≤ (λ′ − λ)(πTabk
akb + σabσ

ab/8), (5.21)

or else

s′ ≤ (2πTabk
akb + σabσ

ab/4). (5.22)

Similarly, if the affine parameter is infinite, then instead of requiring s = 0 in the first proof

one only needs to require s ≤ 0. The weakening of this assumption only makes a difference
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in situations when s is negative which requires that sa be spacelike or null. However, these

assumptions are not sufficient to prove the GCEB because the GCEB counts positively all

the entropy that crosses the causal surface L regardless of the direction of the entropy flow.

As an example of a situation in which one might want to assign a negative s, con-

sider a black hole which is radiating Hawking quanta outward but which is kept critically

illuminated by incoming pure matter. Since entropy is being radiated from the horizon,

a hydrodynamic description of the system requires the entropy flowing into the horizon

to be negative. Admittedly, this situation is probably outside the hydrodynamic regime’s

validity. But as long as the entropy current on the horizon is a good approximation to the

change in Sout over time, the approximation is sufficient for purposes of proving the GSL.

It does not matter if the entropy current is unphysical in other respects.

Strominger and Thompson (ST) [62] have pointed out that in BFM’s proof, the iso-

lation condition (5.13), the condition that the lightsheet L be initially nonexpanding, and

the null energy condition can all be replaced with a single, weaker condition:

s|B ≤ −θ/4. (5.23)

The proof then essentially states that if the GSL is satisfied at B, it is satisfied on the

entire causal surface. This is more elegant than the seemingly arbitrary conditions of

BFM’s proof. It also helps to explain why the GSL should apply to global event horizons,

which are defined using a nonlocal “teleological” boundary condition. According to this

modified proof, one can prove that a generator of a causal surface satisfies the GSL only

so long as it also satisfies the GSL at any later time. This can be phrased in a more local

way by saying that every generator which begins to violate the GSL cannot ever change

back into a generator which satisfies the GSL.

In the same paper ST propose that the GSL beyond the hydrodynamic regime is

related to a quantum-corrected version of Bousso’s covariant entropy bound, in which the

entanglement entropy is added to the area. Unfortunately they are not able to make this

provocative conjecture precise except in the two-dimensional RST model. ST give a proof

of the quantum Bousso bound in this setting, but it only applies when the matter is in a

coherent state.

In the following section I will discuss a proof of the GSL for coherent states in this RST

model, by Fiola, Preskill, Strominger, and Trivedi [4]. However, unlike the ST’s proposed

quantum Bousso Bound, the proof in the next section applies to the apparent horizon,

rather than to the event horizon (cf. 6.3).

6 2D black holes

Since it is hard to analyze important questions of quantum gravity in 3+1 dimensions, it

might well be more tractable to first consider the analogous issues in 1+1 dimensions. The

1+1 Einstein-Hilbert action is topological field theory, and therefore has no local degrees

of freedom. However, one may reintroduce local degrees of freedom by adding a scalar field

to produce “dilaton gravity” [4]. There are many different possible actions one can write

down for this scalar field. Many of the resulting theories are equivalent to restricting to

just the s-wave sector in a higher dimensional theory.
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There exists a 1+1 dimensional model, found by Russo, Susskind, and Thorlacius

(RST), which is exactly solvable in the large N limit and yet also includes finite backreaction

effects due to Hawking radiation. One does this by taking the limit that Planck’s constant

~ goes to zero while holding N~ fixed so that the backreaction due to Hawking radiation

remains finite. The hope is to prove the GSL in regimes beyond the quasi-stationary limit

by means of an exact calculation. Because this proof is based more on calculation than on

conceptual analysis, it is specific to the RST model. Therefore, I will first present the RST

model, and then go on to describe the proof of the GSL for coherent states in this model.

6.1 The RST model

RST [63] began with the action of the classical CGHS model [64]:

Sclassical =
1

2π

∫

d2x
√−g

[

e−2φ(R + 4(∇φ)2 + 4λ2)) − 1

2
(∇µfi∇µfi)

]

. (6.1)

Here g is the determinant of the metric, R is the curvature scalar, φ is the dilaton field,

fi are the N scalar fields, and the repeated index i is summed over. In black hole like

solutions, the value of the dilaton varies over the spacetime in such a way that the theory

is weakly coupled far from the black hole and strongly coupled inside near the “singularity”.

Null coordinates x+ and x− may be defined having the property that

g++ = g−− = 0. (6.2)

The event horizon is the boundary which separates the outgoing light rays that escape to

the weakly coupled region from the outgoing light rays that fall into the strongly coupled

region. On the other hand, the apparent horizon is located where ∂+φ vanishes. These two

definitions of the horizon agree for a stationary black hole. Let φH represent the value of

φ on the horizon. One may then calculate in the usual ways the mass:

MBH =
λ

π
e−2φH , (6.3)

the temperature (which is independent of the mass):

TBH =
λ

2π
, (6.4)

and the entropy:

SBH = 2e−2φH . (6.5)

(These properties all agree with those for a near-extremal magnetically charged black hole

in 4 dimensional dilaton gravity [65], a theory which reduces to the CGHS model when

restricted to classical s-waves.)

There are semiclassical correct corrections to the theory even in the large N limit. Fluc-

tuations in the metric and dilaton are negligible, and the corrections to the stress energy

of the scalars fi can be calculated using the conformal anomaly. The one loop correction

is equivalent to a classical theory with a nonlocal term added to the action of eq. (6.3):

Sloop = − N

96π

∫

d2x
√

−g(x)

∫

d2y
√

−g(y)R(x)G(x, y)R(y), (6.6)
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where G(x, y) is the Green’s function of ∇2. Adding an additional counterterm of the form

Scounter = − N

48π

∫

d2x
√−gφR, (6.7)

makes the resulting RST model is exactly solvable. Defining ρ implicitly by means of the

nonzero component of the metric in null coordinates as follows:

g+− = −e2ρ/2, (6.8)

and redefining the fields so that

Ω =
12

N
e−2φ +

φ

2
+

1

4
ln

N

48
, (6.9)

and

χ =
12

N
e−2φ + ρ − φ

2
− 1

4
ln

N

3
, (6.10)

the action Seff = Sclassical + Sloop + Scounter takes the form:

Seff =
1

π

∫

d2x

[

N

12
(−∂+χ∂−χ + ∂−Ω ∂+Ω + λ2e2χ−2Ω +

1

2
∂+fi ∂−fi

]

(6.11)

The scalar fields fi are now decoupled from Ω and χ. Further simplification comes by

choosing the null coordinates x+ and x− so that the relation

χ = Ω, (6.12)

which is equivalent to

ρ = φ +
1

2
ln

N

12
, (6.13)

holds on-shell. This is one way of fixing the parameter ρ in eq. (6.8), which makes the

exact solubility manifest. Another choice is the sigma coordinates (also defined only

on-shell) which are related to the null coordinates as follows:

λx+ = eλσ+

, λx− = −e−λσ−

. (6.14)

These σ asymptotically correspond to the inertial coordinates at I−, which means that

the vacuum built on them is the state that contains no quanta as measured by asymptotic

observers to the past.

Ω is not a monotonic function of φ; rather, it has a minimum at a critical value:

φcr = −1

2
ln

N

48
, Ωcr =

1

4
. (6.15)

Values of Ω less than Ωcr do not correspond to any value of φ and are therefore unphysical.

So wherever the fields reach the critical value actually corresponds to a boundary of the

spacetime. When this boundary is timelike, the RST model requires reflecting boundary

conditions in order to be complete. This corresponds to the “origin” of spacetime in

the 3+1 dimensional analogue. When this boundary is spacelike, it corresponds to the

singularity of the 3+1 dimensional black hole — and in fact, it is a curvature singularity

in 1+1 dimensions as well. Strong coupling occurs where Ω ∼ Ωcr, near the origin or the

singularity, while weak coupling occurs when Ω ≫ Ωcr, far from the black hole.
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6.2 The entropy formula

According to the abstract of Fiola, Preskill, Strominger, and Trivedi (henceforth FPST) [4],

“a generalized second law of thermodynamics is formulated, and shown to be valid under

suitable conditions.” One of these conditions is that the matter falling upon the black hole

must be in a coherent state. FPST state that if the infalling matter is not coherent, then

sometimes the GSL is violated. This claim, if true, would be even more remarkable than

the proof itself. However, some of the assumptions behind this claim are questionable, such

as FPST’s formula for the total entropy, and the choice of the apparent horizon over the

event horizon for defining the GSL. I will begin by discussing these assumptions, and then

will go on to cover their proof.

The generalized entropy should be a number associated with any spacelike slice termi-

nating on a point on the horizon. FPST proposed formula is:

Stot = SBH + SBO + SFG, (6.16)

where SBH is the entropy of the black hole itself (which classically is given by eq. (6.5),

SFG represents the entanglement entropy of the quantum fields outside the black hole, and

SBO is associated with the entropy of the matter falling into the black hole. FPST evaluate

eq. (6.16) on the apparent horizon.

6.2.1 The fine-grained entropy

SFG, the “fine-grained” entropy, is calculated by considering the entanglement entropy out-

side of the horizon, when the fields are in a vacuum state with respect to the σ coordinates

(i.e. with respect to inertial observers at I−). It is the Gibbs entropy −tr(ρ ln ρ) when one

restricts this state to the system outside of the horizon. Before giving its formula FPST

need to define some auxiliary variables. Given a point P on the apparent horizon, there

are two possible lightlike directions going backwards in time (see figure 2). One way goes

straight to I− at σ+ = σ+
H , while the other reflects off the “origin” and then hits I− at

σ+ = σ+
B . FPST define L = σ+

H−σ+
B as the difference between these coordinates. They also

need an ultraviolet cutoff at a proper distance δ from the horizon because the entanglement

entropy is logarithmically divergent near the horizon. FPST can now calculate the result as

N

6

[

φH − φcr +
λL

2
+ ln

L

δ

]

, (6.17)

up to an error of order unity which can be absorbed into δ. For technical reasons, FPST’s

calculation is only valid under the simplifying assumption that there is no infalling energy

prior to σ+
B (matter falling in before then would make it impossible to simultaneously

satisfy the Kruskal gauge given by (6.12), and the equality between the σ+ and σ− coor-

dinates on the reflecting boundary prior to the formation of the black hole). As the point

P approaches the point of final evaportation, σ+
B limits to the moment at which the event

horizon forms. Consequently, to validate (6.17) everywhere on the horizon, FPST must

assume that no matter falls into the black hole prior to the formation of the event horizon.

Any coherent state of a free field has field expectation values given by a classical solu-

tion, and quantum fluctuations around the mean field values of exactly the same magnitude

– 40 –



J
H
E
P
0
6
(
2
0
0
9
)
0
2
1

Figure 2. A Penrose diagram of the two dimensional black hole. The point P on the apparent

horizon can be traced backwards to σ+

B
or σ+

H
. The “outside” is the region whose fine-grained

entropy is being calculated.

as in the vacuum state. Since the shift in expectation values makes no difference to the

entanglement entropy, the exact same formula (6.17) can be used whenever the incoming

matter takes the form of a coherent state built on the σ vacuum (so long as there is no

infalling matter falling in prior to the time σ+
B , as stated above).

6.2.2 The black hole entropy

SBH , the entropy of the black hole, is classically just given by eq. (6.5), but there are quan-

tum corrections. FPST calculate this by considering a black hole in a box in equilibrium

with its radiation. By inserting a little bit of energy into the black hole from outside and

using the First Law, they can calculate ∆SBH +∆SFG of the entire system. This, however,

causes the black hole to grow and consume some of the outside radiation, so ∆SFG must

be subtracted off in order to find the total change in ∆SBH . This then yields ∆SBH up

to a constant, which FPST fix by requiring the black hole to have zero entropy when it

reaches zero size (that is, when φH = φcr = (1/2) ln(N/48) The result is

SBH = 2e−2φH − N

12
φH − N

24

[

1 + ln

(

N

24

)]

.28 (6.18)

Note that the formula above does not depend on the value of the horizon cutoff δ,

whereas the formula for SFG given by (6.17) does. This means that the total fine-grained

28For some reason this term does not agree with the black hole entropy calculated by Myers [66], using

Wald’s Noether charge method.
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entropy SBH + SFG of a given state depends on the cutoff δ. This result is paradoxical

because δ should ultimately be taken to zero (at least semiclassically), which would make

the entropy of the black hole diverge. However, the dependence of the generalized entropy

on δ is only an additive constant in the two-dimensional case, meaning that it cancels out

when calculating changes in the entropy. As FPST say, “the sensitivity to the cutoff does

not prevent us from making definite statements about how the entropy outside the black

hole changes during its evolution, or about the change in the intrinsic entropy of the black

hole itself” ([4] p. 4006). There is no problem since FPST are only interested in comparing

two times when the horizon is present. However, the δ dependence does not cancel out

when comparing a time with a horizon to a time without a horizon, or in higher than

two dimensions. So checking that the GSL holds at the instant of formation or collapse,

or performing a similar analysis in more than 2 dimensions, would require some sort of

renormalization procedure (cf. section 1.2.5)

6.2.3 The Boltzmann entropy

The final term SBO, the Boltzmann entropy, is intended to take into account the entropy

of the matter falling into the black hole. Recall that FPST restrict their consideration to

states in which the infalling matter is in a coherent state. Coherent states are always pure.

In the Gibbs point of view, a pure state must be assigned zero entropy, yet a robust proof of

the GSL requires that matter with nontrivial entropy be allowed to impinge upon the hole.

FPST tell us that “even though the incoming matter is in a pure state, it surely carries

thermodynamic entropy. We can assign a nonzero entropy to this state by performing a

coarse-graining procedure” ([4] p. 4006). In other words, they wish to use the Boltzmann

entropy for defining the entropy of the infalling matter while retaining the Gibbs picture

for the outgoing Hawking radiation. The infalling matter has a left-moving energy profile:

E(σ+) ≡ 12π

N
T++(σ+), (6.19)

using the same unconventional normalization of E as FPST. FPST treat E as a measurable

macroscopic observer, and assign to it an entropy based on the logarithm of the number of

states of left-movers with the same energy profile. They calculate this to be

SBO =
N

6

∫

Σout

dσ+
√

E(σ+). (6.20)

As the coherent excitation falls into the black hole, SBO can only decrease over time. This

means that the addition of the SBO term only makes it harder to satisfy the GSL.

I believe that this approach to calculating the entropy of infalling matter is problematic.

In the Boltzmann picture a coarse-graining procedure is only justified if the information

being ignored is somehow irrelevant to the evolution of the system. This might be the case

if the microstate is in some sense a typical member of the macrostate in question, or if

all members of the macrostate evolve in an indistinguishable way at the microscopic level.

Neither condition is satisfied here because most pure states are not coherent, and coherence

is necessary for the calculation of the value of SFG as given by eq. (6.17). In other words,

the coherent state is not a typical member of its macrostate class.
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On the other hand in the Gibbs perspective, this step involves the unwarranted sub-

stitution of a mixed state for the pure incoming state. Either one retains the pure state,

in which case the entropy of the incoming matter is zero, or else one considers a bona fide

incoherent mixed state, in which case there is no guarantee that (6.17) is valid. As FPST

themselves admit:

While the expression [(6.16)] may appear (and indeed, is) somewhat strange, we

believe it to be a precise two-dimensional analogue of the notion of ‘total entropy’

used implicitly in discussions of four-dimensional black hole thermodynamics. This

prescription might be interpreted as follows. We may consider, instead of a pure initial

state, the mixed initial state ρ that maximizes −trρ ln ρ subject to the constraint

that the energy density is given by the specified function E(σ+). For this mixed

initial state we have SBoltz = −trρ ln ρ. What we are adding to SBH in [eq. (6.16)]

is the fine-grained entropy outside the horizon for this particular mixed initial state.

[Footnote (emphasis added):] Note that we have not really established that this

interpretation is correct. In particular, our expression for SFG has been derived only

for coherent incoming states, and may not apply for arbitrary states. In any event we

have not been able to find any other reasonable and precise alternative to [eq. (6.16)]

that obeys a generalized second law. ([4] p. 4007)

Additionally, even if SBO were the correct formula for the infalling entropy far from the

horizon, one must take into account the “observer dependence” [67] of the entropy — the

fact that the entropy attributable to an object depends not only on the object but also on

how close it is to the horizon of the observer measuring its entropy. Thus a system with

a given entropy at spatial infinity will have a different entropy when it is lowered down to

just outside a black hole event horizon. The reason is that the system is now sitting on

top of the black hole’s thermal atmosphere, whose entropy it raises less than it would have

raised the vacuum. This means that SBO and SFG cannot simply be added together.

A more defensible prescription for the generalized entropy is SBH +Sout, where Sout =

−trρ ln ρ of the region outside of the horizon at the time being considered. This formula

has no need to distinguish which component of the entropy is due to the entanglement and

which component is due to the matter; it is simply the total fine-grained entropy of the

region. However, it requires the specification of a renormalization procedure to be valid

(cf. section 1.2.5).

6.3 Which horizon?

Is it correct to use the global event horizon or the apparent horizon for purposes of the

GSL? The choice makes a significant difference outside of the quasi-steady limit. The usual

opinion is that one ought to use the event horizon. However, FPST take a contrary view:

We find it more appropriate to define SBO, SFG and SBH using the apparent horizon,

for several reasons. First of all, the position of the apparent horizon can be determined

locally in time, without any required information about the global properties of the

spacetime. Our observer on a time slice can readily identify the apparent horizon as the

location where ∂+Ω vanishes. Second, because the position of the apparent horizon is

determined by this local condition, it is easy to compute the trajectory of the apparent

horizon using the RST equations. ([4] p. 4006)
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These reasons are not very convincing. The fact that the location of the event horizon

is sensitive to nonlocal considerations does not by itself amount to an argument that it

cannot be a physically relevant concept. Concepts relying on global structure (such as the

notion of thermal equilibrium in QFT) are often quite important to physics. Furthermore,

there is no reason why a concept of physical interest should also be easy to calculate in a

given model. FPST continue:

Third, if we use the global horizon to define the entropy, the resulting thermodynamic

expressions do not seem to have a nice thermodynamic interpretation. In particular,

the would-be second law is easily violated by sending in a very sharp pulse with a large

entropy and energy density but small total entropy and energy. The essential point

is that the value of the dilaton at the global horizon responds less sensitively to the

incoming pulse than does the dilaton at the apparent horizon. ([4] p. 4007)

Note that because the RST model is the s-wave sector of a 4 dimensional theory, this

argument threatens to invalidate the use of the event horizon in general and not just in

the two dimensional case. This startling claim is not explicated further by FPST, so I will

attempt to elucidate their argument further. (I will describe the argument using the more

familiar four dimensional black hole, whose entropy is the horizon area, since the essential

features are the same in any dimension). Suppose the infalling matter consists of a thin

spherical shell containing energy E, entropy S, and proper radial length r, as measured

far from the black hole. If the shell is hurled at the speed of light into a black hole of

radius R at the speed of light, the event horizon will anticipate the shell by growing to

nearly its final size before the shell even begins to cross the horizon. The horizon finishes

its growth when the shell has completely crossed the horizon. Therefore, in the limit that

r → 0, the event horizon has already grown to its final area when the shell falls in. But

when the shell falls in it reduces the outside entropy by an amount equal to S, without

any instantaneous change in SBH . Consequently the generalized entropy of the event

horizon decreases when the shell crosses the horizon. This violation would not apply to

the apparent horizon because the apparent horizon does not anticipate the infall of matter

but only grows while the shell is actually falling in.

But can r can really be taken to zero while E and S are held fixed? It is easy to show

that the Bekenstein bound would forbid this limit, since (assuming the bound refers to the

narrowest dimension of the shell), it would require that

S ≤ 2πrE. (6.21)

Now if E and r are both small, the total change in horizon area, over the interval that the

shell falls through, is proportional to rE, which is greater than S by virtue of the bound.

However, in the RST model the Bekenstein bound is violated parametrically due to the

large numbers of species. So if the generalized entropy is given by eq. (6.16), the GSL can

be violated for the event horizon by sending in a thin shell containing many species and

thus large SBO. This violation can be seen as an additional reason to reject eq. (6.16)

beyond those given in section 6.2.3.

Suppose that instead of using eq. (6.20), one asks how much fine-grained entropy the

shell adds to the thermal atmosphere of the black hole. When the shell is a distance r
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from the black hole horizon, every part of it is immersed in a thermal bath of temperature

greater than or equal to 1/2πr. Assuming the shell’s energy is a small perturbation to the

thermal atmosphere, the Clausius relation says that

∆S ≤ 2πr∆E. (6.22)

So even though the Bekenstein bound does not hold for isolated objects containing large

numbers of species, when the objects are close to the horizon of the black hole, the

quantity ∆S does satisfy a bound with the same form as the Bekenstein bound. So if

the Bekenstein bound prevents violations of the GSL, eq. (6.22) prevents GSL violations

even in the case of large N . So the event horizon may well obey the GSL in FPST’s

thin-shell thought experiment. However, since the above argument is dimensional, it can

only establish that no parametric violation of the GSL occurs. Conceivably, a violation

could still be present if the factors of order unity work out badly. Since the situation goes

beyond both the quasi-steady and hydrodynamic regimes, it is outside of the scope of any

of the sound arguments included in this review.

There is yet another reason to prefer the event horizon to the apparent horizon: the

GSL can be violated otherwise. This is demonstrated in appendix B of FPST’s paper, which

shows that for noncoherent states, the generalized entropy given by (6.16), as applied to

the apparent horizon, can temporarily go down. FPST say how:

[. . . ] quantum states can be constructed that pack a large positive density of (fine-

grained) entropy without carrying a large energy density. We can prepare matter in

such a state, and allow the matter to fall into a black hole. Then the fine-grained

entropy decreases sharply, but without any compensating sharp increase in the black

hole entropy. Hence the total entropy decreases.

Alternatively, we can make the total entropy decrease (momentarily) by simply

sending in negative energy into the black hole. It can be arranged that the black

hole shrinks and loses entropy without a compensating increase in the fine-grained

entropy. ([4] p. 4012)

The remainder of their appendix is devoted to constructing such states by choosing an alter-

native vacuum defined using a function of the σ+ coordinate. FPST construct the analogue

of the formula for the fine-grained entropy (6.17) which is valid for this new vacuum state,

and show that the total entropy as given by (6.16) can be made to temporarily decrease. It

is well-known that negative energy densities can be made to exist for short periods or small

regions in QFT, so long as they are balanced by even greater positive energies elsewhere,

whose size is governed by certain “quantum inequalities” [68]. The negative energy density

between two conducting plates due to the Casimir effect are an example. If such negative

energy densities fall across the horizon of a black hole, the apparent horizon will instantly

decrease in size and thus lose entropy. The only way to prevent GSL violation would be if

the entanglement entropy in the negative energy region always increases enough to compen-

sate. FPST explicitly calculate SFG to show that this does not occur for certain negative

energy density pulses in the RST model. It may be shown in the case of the Casimir energy

by a simple scaling argument: As the distance x between the Casimir plates decreases, the

energy density scales like x−d where d is the spacetime dimension, while any finite change

in the entanglement entropy across a slice going between the plates scales like x2−d.
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I have argued above that the formula SBH + SFG + SBO is incorrect, but it is not the

problem here. FPST have calculated SFG in the vacuum state with respect to any choice

of null coordinate, and dropping the Boltzmann entropy term does not resolve the GSL

violation. The problem is the choice of the apparent horizon, which responds instantly

to any negative energy perturbation. Whereas the event horizon can expand even when

negative energy falls into it, so long as the negative energy will be followed by positive

energy of sufficient magnitude and closeness in time. (This property of the event horizon

has already been shown by Ford and Roman [69] to be necessary to save the GSL from

the negative energy fluxes associated with non-minimally coupled scalar fields.) Energy

inequalities may therefore be important in determining whether the event horizon can

violate the GSL beyond the quasi-steady limit.

6.4 A proof for coherent states

In summary, FPST have assumed so far that:

1. the system is described by the RST model,

2. the generalized entropy is given by Stot = SFG + SBH + SBO on the apparent

horizon, and

3. no energy falls into the black hole prior to the formation of the event horizon.

They have also calculated each of the three terms in the generalized entropy.

The first step is to add up the expression SFG + SBH + SBO in order to obtain the

total entropy. They begin by adding the first two terms (6.17) and (6.18) together, and

then using (6.9) to re-express the result in terms of Ω instead of φ. The result is

SBH + SFG =
N

6

[

ΩH − 1

4
+

λL

2
+ ln

L

δ

]

. (6.23)

Next they solve for ΩH based on the energy profile E of the infalling matter, using the

definition of the apparent horizon ∂+Ω = 0 to obtain

ΩH =
1

4
+

M

λ
− λL

4
, (6.24)

where M is defined by

M(σ+
H) =

∫ σ+
H

−∞
dσ+ E(σ+). (6.25)

Adding everything together including the Boltzmann entropy (6.20), the final result is

Stotal =
N

6

[

1

λ
M(σ+

H) +
λL

4
+ ln

L

δ
+

∫ ∞

σ+
H

dσ+
√

E(σ+)

]

. (6.26)

FPST now calculate that
∂σ−

H

∂σ+
H

= e−λL

(

1 − E(σ+
H)

Ecr

)

, (6.27)
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where Ecr is the critical infalling energy needed to balance out the Hawking radiation to

keep the size of the black hole constant. Since

L = σ+
H − σ+

B = σ+
H − σ−

H + const., (6.28)

the derivative of L is
∂L

∂σ+
H

= 1 + e−λL

( E
Ecr

)

. (6.29)

This makes it possible to calculate the derivative of Stot in terms of Ẽ = E/Ecr as

∂Stot

∂σ+
H

=
Nλ

24

[

(

√

Ẽ(σ+
H) − 1)2 + e−λL(Ẽ(σ+

H) − 1)

(

1 +
4

λL

)

+
4

λL

]

. (6.30)

Although it is not exactly manifest, this formula is always positive when Ẽ ≥ 0 and L > 0.

Therefore the GSL is established given the above assumptions. Unfortunately, because the

result comes from a calculation rather than a conceptual proof, the reason for the increase

in entropy is mysterious and may be model dependent.

7 Prospects

A summary of the proofs can be found in table 1. The table indicates the authors, in-

formation about the the regime (cf. section 1.2), as well as what extra assumptions or

problems there are. Although there are many proofs, the only ones that appear to be

completely sound are Hawking’s area theorem ([18] section 1.2.3), the three proofs in the

hydrodynamic regime ([16] section 2.2, [21, 22] section 5), and Frolov and Page’s proof from

the S-matrix ([12] section 3). However the conceptual foundations of the hydrodynamic

approximation are not completely clear, and it may be that hydrodynamic proofs are only

valid in the classical regime.

A natural next step would be to attempt a proof of the GSL in the semiclassical but

non-quasi-steady regime. A strategy for constructing such a proof would be to take a

semiclassical quasi-steady proof and find a way to remove the quasi-steady assumption.

Such a proof would have to take into consideration the the nontrivial response of the event

horizon’s area to the infalling energy profile, which is described by eq. (1.16). This could be

used to generalize to a new regime not covered by the semiclassical quasi-steady proofs of

Frolov and Page [12] (section 3), Sorkin [11] (section 4.2), or Mukohyama [27] (section 4.3).

Because the GSL involves assertions about the increase of generalized entropy on ar-

bitrary time slices of the black hole spacetime, the S-matrix approach of Frolov and Page’s

proof seems to be highly dependent on the quasi-steady limit to ensure that what happens

in the asymptotic past and future is relevant for proving the GSL at finite times. Sorkin’s

semiclassical proof is a more likely starting point, because the theorem used in the proof

allows one to make deductions about the entropy difference between any two time slices.

Although for technical reasons this proof is invalid, if the problem can be fixed, it may well

also lead to important results outside the quasi-steady limit.

An alternative strategy would begin with one of the non-quasi-stationary hydrody-

namic proofs and try to promote it to a proof valid in the semiclassical limit. Here
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PROOF REGIME PERTURB.
EXTRA CONDITIONS

SECTION
AND/OR DIFFICULTIES

classical any
null energy condition,

1.2.3Hawking [18]
cosmic censorship

semi. q-steady
entropy localization,

2.1Zurek & Thorne [25]
renormalization

Wald [16] hydro. q-steady adiabaticity (fixable) 2.2

semi. q-steady
CPT insufficient for

3Frolov & Page [12]
charged BH (fixable)

Sorkin 1 [35] full QG any inconsistent assumptions 4.1

semi. q-steady
thermality, not superradiant,

4.2Sorkin 2 [11]
renormalization

semi. q-steady
not superradiant,

4.3Mukohyama [27]
free scalar field

hydro. any
null energy condition,

5.1Flanagan et al. [21]
Bekenstein-like bound

hydro. any
entropy gradient bound,

5.2Bousso et al. [22]
isolation condition

semi. any
RST model, large N,

6Fiola et al. [4]
apparent horizon

Table 1. Indicates each proof’s regime, what kind of perturbations it allows, and any extra

assumptions that are made, or obstructions which arise.

Strominger and Thompson’s proposal [62] for generalizing the Bousso bound to a fully

quantum setting by adding the entanglement entropy to the area seems to be promising

(cf. section 5.3). Since the weaker version of the Bousso bound was important for for-

mulating the GCEB which implied the GSL in the hydrodynamic regime, it stands to

reason that this quantum-corrected Bousso bound might be used to show the GSL in the

semiclassical setting. However, for it to help with proving the GSL in higher dimensions,

this quantum-corrected Bousso bound must first be formulated and proven in dimensions

higher than two. Even in two dimensions the proof of the bound is so far limited to coherent

states in the RST model. It might be best to start by proving the bound in more general

two-dimensional situations, perhaps by adapting one of the more general proof methods.

(Although two-dimensional proofs like that of FPST [4] (section 6) are attractive because

some two-dimensional models are exactly solvable, their downside is that any proof which

takes advantage of an exact solution must necessarily be limited to particular models.)

In order to proceed with either of these two strategies, a more rigorous approach to the

renormalization of Sout is probably needed. Because the entropy diverges near the horizon,

one naive renormalization procedure is to put a membrane M just outside the black hole

event horizon, and find the entropy outside of the membrane M . Then one might hope

to renormalize this entropy while taking the limit that M approaches the horizon. Finally

one would have to show that all of the different ways of taking this limit give the same
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result. However, this procedure fails because M is a perfectly sharp boundary which is

itself associated with an infinite entanglement entropy.

Instead, one might use the mutual information, defined as the difference between the

sum of the entropy of two systems and the entropy of the combination of both the systems

(in other words, the mutual information measures the extent to which the entropy of a

system is less than the sum of the entropies of its parts). The mutual information between

the region inside the event horizon and the region outside of M should be finite so long

as there is a finite proper distance between every point on M and the horizon [70]. Other

possible ways to regularize the entropy divergence are given in ref. [71].

Another approach would be to try to frame the proof of the GSL using algebraic QFT.

If the generalized entropy can be defined directly in terms of the infinite algebra associated

with the region outside of the event horizon, then it may be possible to entirely sidestep

any need to renormalize a finite entropy.

Another mystery of the GSL as presently formulated is why it applies to the event

horizon, which is teleologically defined in terms of what is going to happen in the future.

However, the ultimate proof of the GSL must be framed entirely within a theory of quantum

gravity. If the GSL is ultimately true because of quantum gravitational physics occurring

at the Planck scale, it seems a little strange that it should only apply to event horizons

and not to all causal surfaces whatsoever. But some causal surfaces disobey the GSL,

as discussed in section 1.1.2. So it would be nice if some local principle could be found

which applies to all causal surfaces and which implies the GSL for event horizons. Such

a principle might be provable using only the physics close to the horizon. Perhaps then,

by having a theory of generalized thermodynamics broad enough to apply to all causal

surfaces everywhere, it will be easier to see what features a microscopic theory of quantum

gravity needs in order to give rise to macroscopic thermal behavior.
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